iOS-এ একটি AutoML-প্রশিক্ষিত মডেলের সাথে লেবেল ছবি
আপনি AutoML Vision Edge ব্যবহার করে আপনার নিজের মডেলকে প্রশিক্ষণ দেওয়ার পরে, আপনি ছবিগুলিকে লেবেল করতে আপনার অ্যাপে এটি ব্যবহার করতে পারেন৷
অটোএমএল ভিশন এজ থেকে প্রশিক্ষিত মডেলগুলিকে সংহত করার দুটি উপায় রয়েছে৷ আপনি মডেলের ফাইলগুলিকে আপনার Xcode প্রকল্পে অনুলিপি করে মডেলটিকে বান্ডিল করতে পারেন, অথবা আপনি Firebase থেকে গতিশীলভাবে ডাউনলোড করতে পারেন।
মডেল bundling বিকল্প | |
---|---|
আপনার অ্যাপে বান্ডিল |
|
Firebase দিয়ে হোস্ট করা হয়েছে |
|
চেষ্টা করে দেখুন
- এই API এর একটি উদাহরণ ব্যবহার দেখতে নমুনা অ্যাপের সাথে খেলুন।
আপনি শুরু করার আগে
1. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:আপনার অ্যাপের সাথে একটি মডেল বান্ডিল করার জন্য:
pod 'GoogleMLKit/ImageLabelingAutoML'Firebase থেকে গতিশীলভাবে একটি মডেল ডাউনলোড করার জন্য,
LinkFirebase
নির্ভরতা যোগ করুন: pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'2. আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর
.xcworkspace
কোড> ব্যবহার করে খুলুন। ML কিট Xcode সংস্করণ 13.2.1 বা তার বেশিতে সমর্থিত। 3. আপনি যদি একটি মডেল ডাউনলোড করতে চান তবে নিশ্চিত করুন যে আপনি আপনার iOS প্রকল্পে Firebase যোগ করেছেন , যদি আপনি ইতিমধ্যে তা না করে থাকেন। আপনি মডেল বান্ডিল যখন এটি প্রয়োজন হয় না.1. মডেল লোড করুন
একটি স্থানীয় মডেল উৎস কনফিগার করুন
আপনার অ্যাপের সাথে মডেল বান্ডিল করতে:1. একটি ফোল্ডারে Firebase কনসোল থেকে ডাউনলোড করা জিপ সংরক্ষণাগার থেকে মডেল এবং এর মেটাডেটা বের করুন:
your_model_directory |____dict.txt |____manifest.json |____model.tfliteতিনটি ফাইলই একই ফোল্ডারে থাকতে হবে। আমরা সুপারিশ করি যে আপনি ফাইলগুলি ডাউনলোড করার সময় ব্যবহার করুন, পরিবর্তন ছাড়াই (ফাইলের নাম সহ)।
2. আপনার Xcode প্রকল্পে ফোল্ডারটি অনুলিপি করুন, যখন আপনি এটি করবেন তখন ফোল্ডার রেফারেন্স তৈরি করুন নির্বাচন করার যত্ন নিন। মডেল ফাইল এবং মেটাডেটা অ্যাপ বান্ডেলে অন্তর্ভুক্ত করা হবে এবং ML Kit-এ উপলব্ধ হবে।
3. মডেল ম্যানিফেস্ট ফাইলের পথ নির্দিষ্ট করে
AutoMLImageLabelerLocalModel
অবজেক্ট তৈরি করুন: সুইফট
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
উদ্দেশ্য-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
একটি Firebase-হোস্টেড মডেল উৎস কনফিগার করুন
দূরবর্তীভাবে-হোস্ট করা মডেল ব্যবহার করতে, একটি AutoMLImageLabelerRemoteModel
অবজেক্ট তৈরি করুন, আপনি মডেলটি প্রকাশ করার সময় যে নামটি নির্ধারণ করেছিলেন তা উল্লেখ করে:
সুইফট
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
উদ্দেশ্য-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
তারপরে, আপনি যে শর্তে ডাউনলোড করার অনুমতি দিতে চান তা উল্লেখ করে মডেল ডাউনলোড টাস্ক শুরু করুন। যদি মডেলটি ডিভাইসে না থাকে, বা মডেলটির একটি নতুন সংস্করণ উপলব্ধ থাকলে, টাস্কটি অসিঙ্ক্রোনাসভাবে Firebase থেকে মডেলটি ডাউনলোড করবে:
সুইফট
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
উদ্দেশ্য-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
অনেক অ্যাপ তাদের ইনিশিয়ালাইজেশন কোডে ডাউনলোড টাস্ক শুরু করে, কিন্তু মডেল ব্যবহার করার আগে আপনি যেকোন সময়ে তা করতে পারেন।
আপনার মডেল থেকে একটি ইমেজ লেবেলার তৈরি করুন
আপনি আপনার মডেল উত্সগুলি কনফিগার করার পরে, তাদের মধ্যে একটি থেকে একটি ImageLabeler
অবজেক্ট তৈরি করুন৷
যদি আপনার কাছে শুধুমাত্র স্থানীয়ভাবে বান্ডিল করা মডেল থাকে, তাহলে আপনার AutoMLImageLabelerLocalModel
অবজেক্ট থেকে একটি লেবেলার তৈরি করুন এবং আপনার প্রয়োজনীয় কনফিডেন্স স্কোর থ্রেশহোল্ড কনফিগার করুন ( আপনার মোডের মূল্যায়ন দেখুন :
সুইফট
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
আপনার যদি দূরবর্তীভাবে-হোস্ট করা মডেল থাকে, তাহলে আপনাকে এটি চালানোর আগে এটি ডাউনলোড করা হয়েছে কিনা তা পরীক্ষা করতে হবে। আপনি মডেল ম্যানেজারের isModelDownloaded
(remoteModel:) পদ্ধতি ব্যবহার করে মডেল ডাউনলোড টাস্কের স্থিতি পরীক্ষা করতে পারেন।
যদিও আপনাকে শুধুমাত্র লেবেলার চালানোর আগে এটি নিশ্চিত করতে হবে, যদি আপনার কাছে একটি দূরবর্তীভাবে-হোস্ট করা মডেল এবং একটি স্থানীয়ভাবে-বান্ডিল মডেল উভয়ই থাকে, তাহলে ImageLabeler
টি ইনস্ট্যান্টিয়েট করার সময় এই চেকটি সম্পাদন করা বোধগম্য হতে পারে: যদি এটি হয় তাহলে দূরবর্তী মডেল থেকে একটি লেবেলার তৈরি করুন ডাউনলোড করা হয়েছে, এবং অন্যথায় স্থানীয় মডেল থেকে।
সুইফট
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
যদি আপনার কাছে শুধুমাত্র একটি দূরবর্তীভাবে হোস্ট করা মডেল থাকে, তাহলে আপনার মডেল-সম্পর্কিত কার্যকারিতা অক্ষম করা উচিত-উদাহরণস্বরূপ, ধূসর-আউট বা আপনার UI-এর অংশ লুকান-যতক্ষণ না আপনি নিশ্চিত করেন যে মডেলটি ডাউনলোড করা হয়েছে।
আপনি ডিফল্ট বিজ্ঞপ্তি কেন্দ্রে পর্যবেক্ষকদের সংযুক্ত করে মডেল ডাউনলোডের অবস্থা পেতে পারেন। পর্যবেক্ষক ব্লকে self
সম্পর্কে একটি দুর্বল রেফারেন্স ব্যবহার করতে ভুলবেন না, যেহেতু ডাউনলোডে কিছু সময় লাগতে পারে, এবং ডাউনলোড শেষ হওয়ার সময় থেকে উদ্ভূত বস্তুটি মুক্ত করা যেতে পারে। যেমন:
সুইফট
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
উদ্দেশ্য-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. ইনপুট ইমেজ প্রস্তুত করুন
একটি UIImage
বা একটি CMSampleBuffer
ব্যবহার করে একটি VisionImage
অবজেক্ট তৈরি করুন।
আপনি একটি UIImage
ব্যবহার করলে, এই পদক্ষেপগুলি অনুসরণ করুন:
-
UIImage
দিয়ে একটিVisionImage
অবজেক্ট তৈরি করুন। সঠিক.orientation
উল্লেখ করতে ভুলবেন না।সুইফট
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
উদ্দেশ্য-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
আপনি যদি একটি
CMSampleBuffer
ব্যবহার করেন তবে এই পদক্ষেপগুলি অনুসরণ করুন:CMSampleBuffer
এ থাকা ইমেজ ডেটার ওরিয়েন্টেশন নির্দিষ্ট করুন।ইমেজ ওরিয়েন্টেশন পেতে:
সুইফট
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
উদ্দেশ্য-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
-
CMSampleBuffer
অবজেক্ট এবং ওরিয়েন্টেশন ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন:,সুইফট
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
উদ্দেশ্য-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. ইমেজ লেবেলার চালান
অ্যাসিঙ্ক্রোনাসভাবে:
সুইফট
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
উদ্দেশ্য-C
[imageLabeler processImage:image completion:^(NSArray
*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }]; সিঙ্ক্রোনাসভাবে:
সুইফট
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
উদ্দেশ্য-C
NSError *error; NSArray
*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error. 4. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান
ইমেজ লেবেলিং অপারেশন সফল হলে, এটিImageLabel
এর একটি অ্যারে প্রদান করে। প্রতিটিImageLabel
এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা হয়েছিল। আপনি প্রতিটি লেবেলের পাঠ্য বিবরণ পেতে পারেন (যদি TensorFlow Lite মডেল ফাইলের মেটাডেটা পাওয়া যায়), আত্মবিশ্বাসের স্কোর এবং সূচক। যেমন:সুইফট
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
উদ্দেশ্য-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে চিত্রগুলিকে লেবেল করতে চান তবে সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
results(in:)
সিঙ্ক্রোনাস API ব্যবহার করুন। প্রদত্ত ভিডিও ফ্রেম থেকে সুসংগতভাবে ফলাফল পেতেAVCaptureVideoDataOutputSampleBufferDelegate
'scaptureOutput(_, didOutput:from:)
ফাংশন থেকে এই পদ্ধতিতে কল করুন।AVCaptureVideoDataOutput
এরalwaysDiscardsLateVideoFrames
ডিসকার্ডসলেটভিডিওফ্রেমগুলিকে ডিটেক্টরে কল থ্রোটল করার জন্যtrue
হিসাবে রাখুন৷ ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, এটি বাদ দেওয়া হবে৷ - আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি প্রক্রিয়াকৃত ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন। একটি উদাহরণের জন্য ML কিট কুইকস্টার্ট নমুনায় UpdatePreviewOverlayViewWithLastFrame দেখুন।
iOS-এ একটি AutoML-প্রশিক্ষিত মডেলের সাথে লেবেল ছবি
আপনি AutoML Vision Edge ব্যবহার করে আপনার নিজের মডেলকে প্রশিক্ষণ দেওয়ার পরে, আপনি ছবিগুলিকে লেবেল করতে আপনার অ্যাপে এটি ব্যবহার করতে পারেন৷
অটোএমএল ভিশন এজ থেকে প্রশিক্ষিত মডেলগুলিকে সংহত করার দুটি উপায় রয়েছে৷ আপনি মডেলের ফাইলগুলিকে আপনার Xcode প্রকল্পে অনুলিপি করে মডেলটিকে বান্ডিল করতে পারেন, অথবা আপনি Firebase থেকে গতিশীলভাবে ডাউনলোড করতে পারেন।
মডেল bundling বিকল্প আপনার অ্যাপে বান্ডিল - মডেলটি বান্ডিলের অংশ
- এমনকি iOS ডিভাইস অফলাইনে থাকলেও মডেলটি অবিলম্বে উপলব্ধ
- ফায়ারবেস প্রকল্পের প্রয়োজন নেই
Firebase দিয়ে হোস্ট করা হয়েছে - ফায়ারবেস মেশিন লার্নিং -এ আপলোড করে মডেলটিকে হোস্ট করুন
- অ্যাপ বান্ডিলের আকার হ্রাস করে
- মডেলটি চাহিদা অনুযায়ী ডাউনলোড করা হয়
- আপনার অ্যাপ পুনঃপ্রকাশ না করেই মডেল আপডেট পুশ করুন
- ফায়ারবেস রিমোট কনফিগারেশনের সাথে সহজ A/B টেস্টিং
- একটি ফায়ারবেস প্রকল্প প্রয়োজন
চেষ্টা করে দেখুন
- এই API এর একটি উদাহরণ ব্যবহার দেখতে নমুনা অ্যাপের সাথে খেলুন।
আপনি শুরু করার আগে
1. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
আপনার অ্যাপের সাথে একটি মডেল বান্ডিল করার জন্য:pod 'GoogleMLKit/ImageLabelingAutoML'
Firebase থেকে গতিশীলভাবে একটি মডেল ডাউনলোড করার জন্য,LinkFirebase
নির্ভরতা যোগ করুন:pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'
2. আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর.xcworkspace
কোড> ব্যবহার করে খুলুন। ML কিট Xcode সংস্করণ 13.2.1 বা তার বেশিতে সমর্থিত। 3. আপনি যদি একটি মডেল ডাউনলোড করতে চান তবে নিশ্চিত করুন যে আপনি আপনার iOS প্রকল্পে Firebase যোগ করেছেন , যদি আপনি ইতিমধ্যে তা না করে থাকেন। আপনি মডেল বান্ডিল যখন এটি প্রয়োজন হয় না.1. মডেল লোড করুন
একটি স্থানীয় মডেল উৎস কনফিগার করুন
আপনার অ্যাপের সাথে মডেল বান্ডিল করতে:
1. একটি ফোল্ডারে Firebase কনসোল থেকে ডাউনলোড করা জিপ সংরক্ষণাগার থেকে মডেল এবং এর মেটাডেটা বের করুন:your_model_directory |____dict.txt |____manifest.json |____model.tflite
তিনটি ফাইলই একই ফোল্ডারে থাকতে হবে। আমরা সুপারিশ করি যে আপনি ফাইলগুলি ডাউনলোড করার সময় ব্যবহার করুন, পরিবর্তন ছাড়াই (ফাইলের নাম সহ)।
2. আপনার Xcode প্রকল্পে ফোল্ডারটি অনুলিপি করুন, যখন আপনি এটি করবেন তখন ফোল্ডার রেফারেন্স তৈরি করুন নির্বাচন করার যত্ন নিন। মডেল ফাইল এবং মেটাডেটা অ্যাপ বান্ডেলে অন্তর্ভুক্ত করা হবে এবং ML Kit-এ উপলব্ধ হবে।
3. মডেল ম্যানিফেস্ট ফাইলের পথ নির্দিষ্ট করেAutoMLImageLabelerLocalModel
অবজেক্ট তৈরি করুন:সুইফট
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
উদ্দেশ্য-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
একটি Firebase-হোস্টেড মডেল উৎস কনফিগার করুন
দূরবর্তীভাবে-হোস্ট করা মডেল ব্যবহার করতে, একটি
AutoMLImageLabelerRemoteModel
অবজেক্ট তৈরি করুন, আপনি মডেলটি প্রকাশ করার সময় যে নামটি নির্ধারণ করেছিলেন তা উল্লেখ করে:সুইফট
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
উদ্দেশ্য-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
তারপরে, আপনি যে শর্তে ডাউনলোড করার অনুমতি দিতে চান তা উল্লেখ করে মডেল ডাউনলোড টাস্ক শুরু করুন। যদি মডেলটি ডিভাইসে না থাকে, বা মডেলটির একটি নতুন সংস্করণ উপলব্ধ থাকলে, টাস্কটি অসিঙ্ক্রোনাসভাবে Firebase থেকে মডেলটি ডাউনলোড করবে:
সুইফট
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
উদ্দেশ্য-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
অনেক অ্যাপ তাদের ইনিশিয়ালাইজেশন কোডে ডাউনলোড টাস্ক শুরু করে, কিন্তু মডেল ব্যবহার করার আগে আপনি যেকোন সময়ে তা করতে পারেন।
আপনার মডেল থেকে একটি ইমেজ লেবেলার তৈরি করুন
আপনি আপনার মডেল উত্সগুলি কনফিগার করার পরে, তাদের মধ্যে একটি থেকে একটি
ImageLabeler
অবজেক্ট তৈরি করুন৷যদি আপনার কাছে শুধুমাত্র স্থানীয়ভাবে বান্ডিল করা মডেল থাকে, তাহলে আপনার
AutoMLImageLabelerLocalModel
অবজেক্ট থেকে একটি লেবেলার তৈরি করুন এবং আপনার প্রয়োজনীয় কনফিডেন্স স্কোর থ্রেশহোল্ড কনফিগার করুন ( আপনার মোডের মূল্যায়ন দেখুন :সুইফট
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
আপনার যদি দূরবর্তীভাবে-হোস্ট করা মডেল থাকে, তাহলে আপনাকে এটি চালানোর আগে এটি ডাউনলোড করা হয়েছে কিনা তা পরীক্ষা করতে হবে। আপনি মডেল ম্যানেজারের
isModelDownloaded
(remoteModel:) পদ্ধতি ব্যবহার করে মডেল ডাউনলোড টাস্কের স্থিতি পরীক্ষা করতে পারেন।যদিও আপনাকে শুধুমাত্র লেবেলার চালানোর আগে এটি নিশ্চিত করতে হবে, যদি আপনার কাছে একটি দূরবর্তীভাবে-হোস্ট করা মডেল এবং একটি স্থানীয়ভাবে-বান্ডিল মডেল উভয়ই থাকে, তাহলে
ImageLabeler
টি ইনস্ট্যান্টিয়েট করার সময় এই চেকটি সম্পাদন করা বোধগম্য হতে পারে: যদি এটি হয় তাহলে দূরবর্তী মডেল থেকে একটি লেবেলার তৈরি করুন ডাউনলোড করা হয়েছে, এবং অন্যথায় স্থানীয় মডেল থেকে।সুইফট
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
যদি আপনার কাছে শুধুমাত্র একটি দূরবর্তীভাবে হোস্ট করা মডেল থাকে, তাহলে আপনার মডেল-সম্পর্কিত কার্যকারিতা অক্ষম করা উচিত-উদাহরণস্বরূপ, ধূসর-আউট বা আপনার UI-এর অংশ লুকান-যতক্ষণ না আপনি নিশ্চিত করেন যে মডেলটি ডাউনলোড করা হয়েছে।
আপনি ডিফল্ট বিজ্ঞপ্তি কেন্দ্রে পর্যবেক্ষকদের সংযুক্ত করে মডেল ডাউনলোডের অবস্থা পেতে পারেন। পর্যবেক্ষক ব্লকে
self
সম্পর্কে একটি দুর্বল রেফারেন্স ব্যবহার করতে ভুলবেন না, যেহেতু ডাউনলোডে কিছু সময় লাগতে পারে, এবং ডাউনলোড শেষ হওয়ার সময় থেকে উদ্ভূত বস্তুটি মুক্ত করা যেতে পারে। যেমন:সুইফট
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
উদ্দেশ্য-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. ইনপুট ইমেজ প্রস্তুত করুন
একটি
UIImage
বা একটিCMSampleBuffer
ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন।আপনি একটি
UIImage
ব্যবহার করলে, এই পদক্ষেপগুলি অনুসরণ করুন:-
UIImage
দিয়ে একটিVisionImage
অবজেক্ট তৈরি করুন। সঠিক.orientation
উল্লেখ করতে ভুলবেন না।সুইফট
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
উদ্দেশ্য-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
আপনি যদি একটি
CMSampleBuffer
ব্যবহার করেন তবে এই পদক্ষেপগুলি অনুসরণ করুন:CMSampleBuffer
এ থাকা ইমেজ ডেটার ওরিয়েন্টেশন নির্দিষ্ট করুন।ইমেজ ওরিয়েন্টেশন পেতে:
সুইফট
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
উদ্দেশ্য-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
-
CMSampleBuffer
অবজেক্ট এবং ওরিয়েন্টেশন ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন:,সুইফট
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
উদ্দেশ্য-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. ইমেজ লেবেলার চালান
অ্যাসিঙ্ক্রোনাসভাবে:
সুইফট
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
উদ্দেশ্য-C
[imageLabeler processImage:image completion:^(NSArray
*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }]; সিঙ্ক্রোনাসভাবে:
সুইফট
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
উদ্দেশ্য-C
NSError *error; NSArray
*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error. 4. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান
ইমেজ লেবেলিং অপারেশন সফল হলে, এটিImageLabel
এর একটি অ্যারে প্রদান করে। প্রতিটিImageLabel
এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা হয়েছিল। আপনি প্রতিটি লেবেলের পাঠ্য বিবরণ পেতে পারেন (যদি TensorFlow Lite মডেল ফাইলের মেটাডেটা পাওয়া যায়), আত্মবিশ্বাসের স্কোর এবং সূচক। যেমন:সুইফট
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
উদ্দেশ্য-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে চিত্রগুলিকে লেবেল করতে চান তবে সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
results(in:)
সিঙ্ক্রোনাস API ব্যবহার করুন। প্রদত্ত ভিডিও ফ্রেম থেকে সুসংগতভাবে ফলাফল পেতেAVCaptureVideoDataOutputSampleBufferDelegate
'scaptureOutput(_, didOutput:from:)
ফাংশন থেকে এই পদ্ধতিতে কল করুন।AVCaptureVideoDataOutput
এরalwaysDiscardsLateVideoFrames
ডিসকার্ডসলেটভিডিওফ্রেমগুলিকে ডিটেক্টরে কল থ্রোটল করার জন্যtrue
হিসাবে রাখুন৷ ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, এটি বাদ দেওয়া হবে৷ - আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি প্রক্রিয়াকৃত ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন। একটি উদাহরণের জন্য ML কিট কুইকস্টার্ট নমুনায় UpdatePreviewOverlayViewWithLastFrame দেখুন।
iOS-এ একটি AutoML-প্রশিক্ষিত মডেলের সাথে লেবেল ছবি
আপনি AutoML Vision Edge ব্যবহার করে আপনার নিজের মডেলকে প্রশিক্ষণ দেওয়ার পরে, আপনি ছবিগুলিকে লেবেল করতে আপনার অ্যাপে এটি ব্যবহার করতে পারেন৷
অটোএমএল ভিশন এজ থেকে প্রশিক্ষিত মডেলগুলিকে সংহত করার দুটি উপায় রয়েছে৷ আপনি মডেলের ফাইলগুলিকে আপনার Xcode প্রকল্পে অনুলিপি করে মডেলটিকে বান্ডিল করতে পারেন, অথবা আপনি Firebase থেকে গতিশীলভাবে ডাউনলোড করতে পারেন।
মডেল bundling বিকল্প আপনার অ্যাপে বান্ডিল - মডেলটি বান্ডিলের অংশ
- এমনকি iOS ডিভাইস অফলাইনে থাকলেও মডেলটি অবিলম্বে উপলব্ধ
- ফায়ারবেস প্রকল্পের প্রয়োজন নেই
Firebase দিয়ে হোস্ট করা হয়েছে - ফায়ারবেস মেশিন লার্নিং -এ আপলোড করে মডেলটিকে হোস্ট করুন
- অ্যাপ বান্ডিলের আকার হ্রাস করে
- মডেলটি চাহিদা অনুযায়ী ডাউনলোড করা হয়
- আপনার অ্যাপ পুনঃপ্রকাশ না করেই মডেল আপডেট পুশ করুন
- ফায়ারবেস রিমোট কনফিগারেশনের সাথে সহজ A/B টেস্টিং
- একটি ফায়ারবেস প্রকল্প প্রয়োজন
চেষ্টা করে দেখুন
- এই API এর একটি উদাহরণ ব্যবহার দেখতে নমুনা অ্যাপের সাথে খেলুন।
আপনি শুরু করার আগে
1. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
আপনার অ্যাপের সাথে একটি মডেল বান্ডিল করার জন্য:pod 'GoogleMLKit/ImageLabelingAutoML'
Firebase থেকে গতিশীলভাবে একটি মডেল ডাউনলোড করার জন্য,LinkFirebase
নির্ভরতা যোগ করুন:pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'
2. আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর.xcworkspace
কোড> ব্যবহার করে খুলুন। ML কিট Xcode সংস্করণ 13.2.1 বা তার বেশিতে সমর্থিত। 3. আপনি যদি একটি মডেল ডাউনলোড করতে চান তবে নিশ্চিত করুন যে আপনি আপনার iOS প্রকল্পে Firebase যোগ করেছেন , যদি আপনি ইতিমধ্যে তা না করে থাকেন। আপনি মডেল বান্ডিল যখন এটি প্রয়োজন হয় না.1. মডেল লোড করুন
একটি স্থানীয় মডেল উৎস কনফিগার করুন
আপনার অ্যাপের সাথে মডেল বান্ডিল করতে:
1. একটি ফোল্ডারে Firebase কনসোল থেকে ডাউনলোড করা জিপ সংরক্ষণাগার থেকে মডেল এবং এর মেটাডেটা বের করুন:your_model_directory |____dict.txt |____manifest.json |____model.tflite
তিনটি ফাইলই একই ফোল্ডারে থাকতে হবে। আমরা সুপারিশ করি যে আপনি ফাইলগুলি ডাউনলোড করার সময় ব্যবহার করুন, পরিবর্তন ছাড়াই (ফাইলের নাম সহ)।
2. আপনার Xcode প্রকল্পে ফোল্ডারটি অনুলিপি করুন, যখন আপনি এটি করবেন তখন ফোল্ডার রেফারেন্স তৈরি করুন নির্বাচন করার যত্ন নিন। মডেল ফাইল এবং মেটাডেটা অ্যাপ বান্ডেলে অন্তর্ভুক্ত করা হবে এবং ML Kit-এ উপলব্ধ হবে।
3. মডেল ম্যানিফেস্ট ফাইলের পথ নির্দিষ্ট করেAutoMLImageLabelerLocalModel
অবজেক্ট তৈরি করুন:সুইফট
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
উদ্দেশ্য-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
একটি Firebase-হোস্টেড মডেল উৎস কনফিগার করুন
দূরবর্তীভাবে-হোস্ট করা মডেল ব্যবহার করতে, একটি
AutoMLImageLabelerRemoteModel
অবজেক্ট তৈরি করুন, আপনি মডেলটি প্রকাশ করার সময় যে নামটি নির্ধারণ করেছিলেন তা উল্লেখ করে:সুইফট
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
উদ্দেশ্য-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
তারপরে, আপনি যে শর্তে ডাউনলোড করার অনুমতি দিতে চান তা উল্লেখ করে মডেল ডাউনলোড টাস্ক শুরু করুন। যদি মডেলটি ডিভাইসে না থাকে, বা মডেলটির একটি নতুন সংস্করণ উপলব্ধ থাকলে, টাস্কটি অসিঙ্ক্রোনাসভাবে Firebase থেকে মডেলটি ডাউনলোড করবে:
সুইফট
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
উদ্দেশ্য-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
অনেক অ্যাপ তাদের ইনিশিয়ালাইজেশন কোডে ডাউনলোড টাস্ক শুরু করে, কিন্তু মডেল ব্যবহার করার আগে আপনি যেকোন সময়ে তা করতে পারেন।
আপনার মডেল থেকে একটি ইমেজ লেবেলার তৈরি করুন
আপনি আপনার মডেল উত্সগুলি কনফিগার করার পরে, তাদের মধ্যে একটি থেকে একটি
ImageLabeler
অবজেক্ট তৈরি করুন৷যদি আপনার কাছে শুধুমাত্র স্থানীয়ভাবে বান্ডিল করা মডেল থাকে, তাহলে আপনার
AutoMLImageLabelerLocalModel
অবজেক্ট থেকে একটি লেবেলার তৈরি করুন এবং আপনার প্রয়োজনীয় কনফিডেন্স স্কোর থ্রেশহোল্ড কনফিগার করুন ( আপনার মোডের মূল্যায়ন দেখুন :সুইফট
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
আপনার যদি দূরবর্তীভাবে-হোস্ট করা মডেল থাকে, তাহলে আপনাকে এটি চালানোর আগে এটি ডাউনলোড করা হয়েছে কিনা তা পরীক্ষা করতে হবে। আপনি মডেল ম্যানেজারের
isModelDownloaded
(remoteModel:) পদ্ধতি ব্যবহার করে মডেল ডাউনলোড টাস্কের স্থিতি পরীক্ষা করতে পারেন।যদিও আপনাকে শুধুমাত্র লেবেলার চালানোর আগে এটি নিশ্চিত করতে হবে, যদি আপনার কাছে একটি দূরবর্তীভাবে-হোস্ট করা মডেল এবং একটি স্থানীয়ভাবে-বান্ডিল মডেল উভয়ই থাকে, তাহলে
ImageLabeler
টি ইনস্ট্যান্টিয়েট করার সময় এই চেকটি সম্পাদন করা বোধগম্য হতে পারে: যদি এটি হয় তাহলে দূরবর্তী মডেল থেকে একটি লেবেলার তৈরি করুন ডাউনলোড করা হয়েছে, এবং অন্যথায় স্থানীয় মডেল থেকে।সুইফট
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
যদি আপনার কাছে শুধুমাত্র একটি দূরবর্তীভাবে হোস্ট করা মডেল থাকে, তাহলে আপনার মডেল-সম্পর্কিত কার্যকারিতা অক্ষম করা উচিত-উদাহরণস্বরূপ, ধূসর-আউট বা আপনার UI-এর অংশ লুকান-যতক্ষণ না আপনি নিশ্চিত করেন যে মডেলটি ডাউনলোড করা হয়েছে।
আপনি ডিফল্ট বিজ্ঞপ্তি কেন্দ্রে পর্যবেক্ষকদের সংযুক্ত করে মডেল ডাউনলোডের অবস্থা পেতে পারেন। পর্যবেক্ষক ব্লকে
self
সম্পর্কে একটি দুর্বল রেফারেন্স ব্যবহার করতে ভুলবেন না, যেহেতু ডাউনলোডে কিছু সময় লাগতে পারে, এবং ডাউনলোড শেষ হওয়ার সময় থেকে উদ্ভূত বস্তুটি মুক্ত করা যেতে পারে। যেমন:সুইফট
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
উদ্দেশ্য-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. ইনপুট ইমেজ প্রস্তুত করুন
একটি
UIImage
বা একটিCMSampleBuffer
ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন।আপনি একটি
UIImage
ব্যবহার করলে, এই পদক্ষেপগুলি অনুসরণ করুন:-
UIImage
দিয়ে একটিVisionImage
অবজেক্ট তৈরি করুন। সঠিক.orientation
উল্লেখ করতে ভুলবেন না।সুইফট
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
উদ্দেশ্য-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
আপনি যদি একটি
CMSampleBuffer
ব্যবহার করেন তবে এই পদক্ষেপগুলি অনুসরণ করুন:CMSampleBuffer
এ থাকা ইমেজ ডেটার ওরিয়েন্টেশন নির্দিষ্ট করুন।ইমেজ ওরিয়েন্টেশন পেতে:
সুইফট
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
উদ্দেশ্য-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
-
CMSampleBuffer
অবজেক্ট এবং ওরিয়েন্টেশন ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন:,সুইফট
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
উদ্দেশ্য-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. ইমেজ লেবেলার চালান
অ্যাসিঙ্ক্রোনাসভাবে:
সুইফট
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
উদ্দেশ্য-C
[imageLabeler processImage:image completion:^(NSArray
*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }]; সিঙ্ক্রোনাসভাবে:
সুইফট
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
উদ্দেশ্য-C
NSError *error; NSArray
*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error. 4. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান
ইমেজ লেবেলিং অপারেশন সফল হলে, এটিImageLabel
এর একটি অ্যারে প্রদান করে। প্রতিটিImageLabel
এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা হয়েছিল। আপনি প্রতিটি লেবেলের পাঠ্য বিবরণ পেতে পারেন (যদি TensorFlow Lite মডেল ফাইলের মেটাডেটা পাওয়া যায়), আত্মবিশ্বাসের স্কোর এবং সূচক। যেমন:সুইফট
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
উদ্দেশ্য-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে চিত্রগুলিকে লেবেল করতে চান তবে সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
results(in:)
সিঙ্ক্রোনাস API ব্যবহার করুন। প্রদত্ত ভিডিও ফ্রেম থেকে সুসংগতভাবে ফলাফল পেতেAVCaptureVideoDataOutputSampleBufferDelegate
'scaptureOutput(_, didOutput:from:)
ফাংশন থেকে এই পদ্ধতিতে কল করুন।AVCaptureVideoDataOutput
এরalwaysDiscardsLateVideoFrames
ডিসকার্ডসলেটভিডিওফ্রেমগুলিকে ডিটেক্টরে কল থ্রোটল করার জন্যtrue
হিসাবে রাখুন৷ ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, এটি বাদ দেওয়া হবে৷ - আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি প্রক্রিয়াকৃত ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন। একটি উদাহরণের জন্য ML কিট কুইকস্টার্ট নমুনায় UpdatePreviewOverlayViewWithLastFrame দেখুন।
iOS-এ একটি AutoML-প্রশিক্ষিত মডেলের সাথে লেবেল ছবি
আপনি AutoML Vision Edge ব্যবহার করে আপনার নিজের মডেলকে প্রশিক্ষণ দেওয়ার পরে, আপনি ছবিগুলিকে লেবেল করতে আপনার অ্যাপে এটি ব্যবহার করতে পারেন৷
অটোএমএল ভিশন এজ থেকে প্রশিক্ষিত মডেলগুলিকে সংহত করার দুটি উপায় রয়েছে৷ আপনি মডেলের ফাইলগুলিকে আপনার Xcode প্রকল্পে অনুলিপি করে মডেলটিকে বান্ডিল করতে পারেন, অথবা আপনি Firebase থেকে গতিশীলভাবে ডাউনলোড করতে পারেন।
মডেল bundling বিকল্প আপনার অ্যাপে বান্ডিল - মডেলটি বান্ডিলের অংশ
- এমনকি iOS ডিভাইস অফলাইনে থাকলেও মডেলটি অবিলম্বে উপলব্ধ
- ফায়ারবেস প্রকল্পের প্রয়োজন নেই
Firebase দিয়ে হোস্ট করা হয়েছে - ফায়ারবেস মেশিন লার্নিং -এ আপলোড করে মডেলটিকে হোস্ট করুন
- অ্যাপ বান্ডিলের আকার হ্রাস করে
- মডেলটি চাহিদা অনুযায়ী ডাউনলোড করা হয়
- আপনার অ্যাপ পুনঃপ্রকাশ না করেই মডেল আপডেট পুশ করুন
- ফায়ারবেস রিমোট কনফিগারেশনের সাথে সহজ A/B টেস্টিং
- একটি ফায়ারবেস প্রকল্প প্রয়োজন
চেষ্টা করে দেখুন
- এই API এর একটি উদাহরণ ব্যবহার দেখতে নমুনা অ্যাপের সাথে খেলুন।
আপনি শুরু করার আগে
1. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
আপনার অ্যাপের সাথে একটি মডেল বান্ডিল করার জন্য:pod 'GoogleMLKit/ImageLabelingAutoML'
Firebase থেকে গতিশীলভাবে একটি মডেল ডাউনলোড করার জন্য,LinkFirebase
নির্ভরতা যোগ করুন:pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'
2. আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর.xcworkspace
কোড> ব্যবহার করে খুলুন। ML কিট Xcode সংস্করণ 13.2.1 বা তার বেশিতে সমর্থিত। 3. আপনি যদি একটি মডেল ডাউনলোড করতে চান তবে নিশ্চিত করুন যে আপনি আপনার iOS প্রকল্পে Firebase যোগ করেছেন , যদি আপনি ইতিমধ্যে তা না করে থাকেন। আপনি মডেল বান্ডিল যখন এটি প্রয়োজন হয় না.1. মডেল লোড করুন
একটি স্থানীয় মডেল উৎস কনফিগার করুন
আপনার অ্যাপের সাথে মডেল বান্ডিল করতে:
1. একটি ফোল্ডারে Firebase কনসোল থেকে ডাউনলোড করা জিপ সংরক্ষণাগার থেকে মডেল এবং এর মেটাডেটা বের করুন:your_model_directory |____dict.txt |____manifest.json |____model.tflite
তিনটি ফাইলই একই ফোল্ডারে থাকতে হবে। আমরা সুপারিশ করি যে আপনি ফাইলগুলি ডাউনলোড করার সময় ব্যবহার করুন, পরিবর্তন ছাড়াই (ফাইলের নাম সহ)।
2. আপনার Xcode প্রকল্পে ফোল্ডারটি অনুলিপি করুন, যখন আপনি এটি করবেন তখন ফোল্ডার রেফারেন্স তৈরি করুন নির্বাচন করার যত্ন নিন। মডেল ফাইল এবং মেটাডেটা অ্যাপ বান্ডেলে অন্তর্ভুক্ত করা হবে এবং ML Kit-এ উপলব্ধ হবে।
3. মডেল ম্যানিফেস্ট ফাইলের পথ নির্দিষ্ট করেAutoMLImageLabelerLocalModel
অবজেক্ট তৈরি করুন:সুইফট
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
উদ্দেশ্য-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
একটি Firebase-হোস্টেড মডেল উৎস কনফিগার করুন
দূরবর্তীভাবে-হোস্ট করা মডেল ব্যবহার করতে, একটি
AutoMLImageLabelerRemoteModel
অবজেক্ট তৈরি করুন, আপনি মডেলটি প্রকাশ করার সময় যে নামটি নির্ধারণ করেছিলেন তা উল্লেখ করে:সুইফট
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
উদ্দেশ্য-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
তারপরে, আপনি যে শর্তে ডাউনলোড করার অনুমতি দিতে চান তা উল্লেখ করে মডেল ডাউনলোড টাস্ক শুরু করুন। যদি মডেলটি ডিভাইসে না থাকে, বা মডেলটির একটি নতুন সংস্করণ উপলব্ধ থাকলে, টাস্কটি অসিঙ্ক্রোনাসভাবে Firebase থেকে মডেলটি ডাউনলোড করবে:
সুইফট
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
উদ্দেশ্য-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
অনেক অ্যাপ তাদের ইনিশিয়ালাইজেশন কোডে ডাউনলোড টাস্ক শুরু করে, কিন্তু মডেল ব্যবহার করার আগে আপনি যেকোন সময়ে তা করতে পারেন।
আপনার মডেল থেকে একটি ইমেজ লেবেলার তৈরি করুন
আপনি আপনার মডেল উত্সগুলি কনফিগার করার পরে, তাদের মধ্যে একটি থেকে একটি
ImageLabeler
অবজেক্ট তৈরি করুন৷যদি আপনার কাছে শুধুমাত্র স্থানীয়ভাবে বান্ডিল করা মডেল থাকে, তাহলে আপনার
AutoMLImageLabelerLocalModel
অবজেক্ট থেকে একটি লেবেলার তৈরি করুন এবং আপনার প্রয়োজনীয় কনফিডেন্স স্কোর থ্রেশহোল্ড কনফিগার করুন ( আপনার মোডের মূল্যায়ন দেখুন :সুইফট
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
আপনার যদি দূরবর্তীভাবে-হোস্ট করা মডেল থাকে, তাহলে আপনাকে এটি চালানোর আগে এটি ডাউনলোড করা হয়েছে কিনা তা পরীক্ষা করতে হবে। আপনি মডেল ম্যানেজারের
isModelDownloaded
(remoteModel:) পদ্ধতি ব্যবহার করে মডেল ডাউনলোড টাস্কের স্থিতি পরীক্ষা করতে পারেন।যদিও আপনাকে শুধুমাত্র লেবেলার চালানোর আগে এটি নিশ্চিত করতে হবে, যদি আপনার কাছে একটি দূরবর্তীভাবে-হোস্ট করা মডেল এবং একটি স্থানীয়ভাবে-বান্ডিল মডেল উভয়ই থাকে, তাহলে
ImageLabeler
টি ইনস্ট্যান্টিয়েট করার সময় এই চেকটি সম্পাদন করা বোধগম্য হতে পারে: যদি এটি হয় তাহলে দূরবর্তী মডেল থেকে একটি লেবেলার তৈরি করুন ডাউনলোড করা হয়েছে, এবং অন্যথায় স্থানীয় মডেল থেকে।সুইফট
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
উদ্দেশ্য-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
যদি আপনার কাছে শুধুমাত্র একটি দূরবর্তীভাবে হোস্ট করা মডেল থাকে, তাহলে আপনার মডেল-সম্পর্কিত কার্যকারিতা অক্ষম করা উচিত-উদাহরণস্বরূপ, ধূসর-আউট বা আপনার UI-এর অংশ লুকান-যতক্ষণ না আপনি নিশ্চিত করেন যে মডেলটি ডাউনলোড করা হয়েছে।
আপনি ডিফল্ট বিজ্ঞপ্তি কেন্দ্রে পর্যবেক্ষকদের সংযুক্ত করে মডেল ডাউনলোডের অবস্থা পেতে পারেন। পর্যবেক্ষক ব্লকে
self
সম্পর্কে একটি দুর্বল রেফারেন্স ব্যবহার করতে ভুলবেন না, যেহেতু ডাউনলোডে কিছু সময় লাগতে পারে, এবং ডাউনলোড শেষ হওয়ার সময় থেকে উদ্ভূত বস্তুটি মুক্ত করা যেতে পারে। যেমন:সুইফট
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
উদ্দেশ্য-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. ইনপুট ইমেজ প্রস্তুত করুন
একটি
UIImage
বা একটিCMSampleBuffer
ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন।আপনি একটি
UIImage
ব্যবহার করলে, এই পদক্ষেপগুলি অনুসরণ করুন:-
UIImage
দিয়ে একটিVisionImage
অবজেক্ট তৈরি করুন। সঠিক.orientation
উল্লেখ করতে ভুলবেন না।সুইফট
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
উদ্দেশ্য-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
আপনি যদি একটি
CMSampleBuffer
ব্যবহার করেন তবে এই পদক্ষেপগুলি অনুসরণ করুন:CMSampleBuffer
এ থাকা ইমেজ ডেটার ওরিয়েন্টেশন নির্দিষ্ট করুন।ইমেজ ওরিয়েন্টেশন পেতে:
সুইফট
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
উদ্দেশ্য-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
-
CMSampleBuffer
অবজেক্ট এবং ওরিয়েন্টেশন ব্যবহার করে একটিVisionImage
অবজেক্ট তৈরি করুন:সুইফট
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
উদ্দেশ্য-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. ইমেজ লেবেলার চালান
অ্যাসিঙ্ক্রোনাসভাবে:
সুইফট
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
উদ্দেশ্য-C
[imageLabeler processImage:image completion:^(NSArray
*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }]; সিঙ্ক্রোনাসভাবে:
সুইফট
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
উদ্দেশ্য-C
NSError *error; NSArray
*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error. 4. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান
ইমেজ লেবেলিং অপারেশন সফল হলে, এটিImageLabel
এর একটি অ্যারে প্রদান করে। প্রতিটিImageLabel
এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা হয়েছিল। আপনি প্রতিটি লেবেলের পাঠ্য বিবরণ পেতে পারেন (যদি TensorFlow Lite মডেল ফাইলের মেটাডেটা পাওয়া যায়), আত্মবিশ্বাসের স্কোর এবং সূচক। যেমন:সুইফট
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
উদ্দেশ্য-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে চিত্রগুলিকে লেবেল করতে চান তবে সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
results(in:)
সিঙ্ক্রোনাস API ব্যবহার করুন। প্রদত্ত ভিডিও ফ্রেম থেকে সুসংগতভাবে ফলাফল পেতেAVCaptureVideoDataOutputSampleBufferDelegate
'scaptureOutput(_, didOutput:from:)
ফাংশন থেকে এই পদ্ধতিতে কল করুন।AVCaptureVideoDataOutput
এরalwaysDiscardsLateVideoFrames
ডিসকার্ডসলেটভিডিওফ্রেমগুলিকে ডিটেক্টরে কল থ্রোটল করার জন্যtrue
হিসাবে রাখুন৷ ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, এটি বাদ দেওয়া হবে৷ - আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি প্রক্রিয়াকৃত ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন। একটি উদাহরণের জন্য ML কিট কুইকস্টার্ট নমুনায় UpdatePreviewOverlayViewWithLastFrame দেখুন।
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2024-11-12 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2024-11-12 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[]]
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের
- ভিডিও ফ্রেম প্রক্রিয়াকরণের জন্য, ডিটেক্টরের