Etiqueta imágenes con un modelo entrenado por AutoML en iOS
Después de entrenar tu propio modelo con AutoML Vision Edge, sigue estos pasos: puedes usarla en tu app para etiquetar imágenes.
Hay dos formas de integrar los modelos entrenados desde AutoML Vision Edge. Puedes empaquetar el modelo copiando los archivos del modelo en tu proyecto Xcode pueden descargarlo de forma dinámica desde Firebase.
Opciones de empaquetado de modelos | |
---|---|
Agrupados en tu app |
|
Alojado en Firebase |
|
Probar
- Prueba la app de ejemplo para ver un ejemplo de uso de esta API.
Antes de comenzar
1. Incluye las bibliotecas del ML Kit en tu Podfile:Para empaquetar un modelo con tu app, sigue estos pasos:
pod 'GoogleMLKit/ImageLabelingAutoML'Para descargar un modelo de Firebase de forma dinámica, agrega
LinkFirebase
.
dependencia:
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'2) Después de instalar o actualizar los Pods de tu proyecto, abre tu proyecto de Xcode. usando su
.xcworkspace
código>. El Kit de AA es compatible con Xcode
versión 13.2.1 o superior.
3. Si quieres descargar un modelo, asegúrate de
agregar Firebase a tu proyecto de iOS
si aún no lo has hecho. Esto no es necesario cuando agrupas los
un modelo de responsabilidad compartida.
1. Carga el modelo
Configura una fuente de modelo local
Para empaquetar el modelo con tu app:1) Extrae el modelo y sus metadatos del archivo ZIP que descargaste. de Firebase console en una carpeta:
your_model_directory |____dict.txt |____manifest.json |____model.tfliteLos tres archivos deben estar en la misma carpeta. Te recomendamos que uses los archivos a medida que los descargaste, sin modificarlas (incluidos los nombres de los archivos).
2) Copia la carpeta en tu proyecto de Xcode, con el cuidado de seleccionar Crea referencias de carpetas cuando lo hagas. El archivo del modelo y los metadatos se incluirá en el paquete de aplicación y estará disponible para el ML Kit.
3) Crea un objeto
AutoMLImageLabelerLocalModel
y especifica la ruta al
Archivo de manifiesto del modelo:
Swift
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
Objective-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
Configura una fuente de modelo alojada en Firebase
Para usar el modelo alojado de forma remota, crea un AutoMLImageLabelerRemoteModel
y especifica el nombre que le asignaste al modelo cuando lo publicaste:
Swift
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
Objective-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
Luego, inicia la tarea de descarga del modelo y especifica las condiciones que deseas permitir la descarga. Si el modelo no está en el dispositivo o si es del modelo está disponible, la tarea descargará de forma asíncrona la de Firebase:
Swift
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
Objective-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
Muchas apps comienzan la tarea de descarga en su código de inicialización, pero tú puedes hacerlo en cualquier momento antes de usar el modelo.
Crea un etiquetador de imágenes a partir de tu modelo
Después de configurar las fuentes de tu modelo, crea un objeto ImageLabeler
a partir de una.
de ellas.
Si solo tienes un modelo empaquetado a nivel local, crea un etiquetador desde tu
AutoMLImageLabelerLocalModel
y configura la puntuación de confianza
umbral que deseas solicitar (consulta Evalúa tu modo:
Swift
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
Si tienes un modelo alojado de forma remota, debes verificar que se haya
descargado antes de ejecutarlo. Puedes verificar el estado de la descarga del modelo
tarea con el método isModelDownloaded
(remoteModel:) del administrador de modelos.
Aunque solo tienes que confirmarlo antes de ejecutar el etiquetador, si
tener un modelo alojado de forma remota y uno empaquetado localmente, podría hacer
sentido realizar esta verificación cuando se crea una instancia de ImageLabeler
: crea un
del etiquetador del modelo remoto, si se descargó, y del modelo local
de lo contrario.
Swift
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
Si solo tienes un modelo alojado de forma remota, debes inhabilitar las funciones funcional, por ejemplo, ocultar o inhabilitar parte de tu IU, hasta que confirmas que el modelo se descargó.
Puedes obtener el estado de descarga del modelo adjuntando observadores al valor predeterminado
Centro de notificaciones. Asegúrate de utilizar una referencia débil para self
en el observador
ya que las descargas pueden tardar un tiempo y el objeto de origen puede
para cuando finalice la descarga. Por ejemplo:
Swift
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
Objective-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. Prepara la imagen de entrada
Crea un objeto VisionImage
con un objeto UIImage
o
CMSampleBuffer
Si usas un UIImage
, sigue estos pasos:
- Crea un objeto
VisionImage
conUIImage
. Asegúrate de especificar el.orientation
correcto.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Si usas un CMSampleBuffer
, sigue estos pasos:
-
Especificar la orientación de los datos de imagen que se incluyen en la
CMSampleBuffer
Para obtener la orientación de la imagen, haz lo siguiente:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Crea un objeto
VisionImage
con el elemento ObjetoCMSampleBuffer
y orientación:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. Ejecuta el etiquetador de imágenes
De forma asíncrona:
Swift
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
Objective-C
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
De forma síncrona:
Swift
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
Objective-C
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. Obtén información sobre los objetos etiquetados
Si la operación de etiquetado de imágenes se realiza correctamente, devuelve un array deImageLabel
Cada ImageLabel
representa un elemento que se
etiquetada en la imagen. Puedes obtener la descripción del texto de cada etiqueta (si está disponible en
los metadatos del archivo del modelo de TensorFlow Lite, el índice y la puntuación de confianza.
Por ejemplo:
Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
Sugerencias para mejorar el rendimiento en tiempo real
Si quieres etiquetar imágenes en una aplicación en tiempo real, sigue estos pasos: pautas para lograr la mejor velocidad de fotogramas:
- Para procesar fotogramas de video, usa la API síncrona
results(in:)
del detector. Llamada este método desde el DeAVCaptureVideoDataOutputSampleBufferDelegate
La funcióncaptureOutput(_, didOutput:from:)
para obtener resultados de un video determinado de forma síncrona marco. Mantener deAVCaptureVideoDataOutput
alwaysDiscardsLateVideoFrames
comotrue
para limitar las llamadas al detector Si un nuevo cliente El fotograma estará disponible mientras se ejecute el detector, que se descartará. - Si usas la salida del detector para superponer gráficos la imagen de entrada, primero obtén el resultado del Kit de AA y, luego, renderiza la imagen y superponerla en un solo paso. De esta manera, renderizas en la superficie de visualización. solo una vez por cada trama de entrada procesada. Consulta updatePreviewOverlayViewWithLastFrame. en la muestra de inicio rápido del Kit de AA para ver un ejemplo.