Etichettare le immagini con un modello addestrato con AutoML su iOS
Dopo aver addestrato il tuo modello utilizzando AutoML Vision Edge, puoi utilizzarlo nella tua app per etichettare le immagini.
Esistono due modi per integrare i modelli addestrati da AutoML Vision Edge. Puoi aggregare il modello copiando i relativi file nel progetto Xcode oppure scaricarlo dinamicamente da Firebase.
Opzioni di raggruppamento dei modelli | |
---|---|
Raggruppato nell'app |
|
Ospitato con Firebase |
|
Prova
- Prova l'app di esempio per vedere un esempio di utilizzo di questa API.
Prima di iniziare
1. Includi le librerie ML Kit nel tuo Podfile:Per il bundling di un modello con la tua app:
pod 'GoogleMLKit/ImageLabelingAutoML'
LinkFirebase
:
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'
.xcworkspace
code>. ML Kit è supportato in Xcode
nella versione 13.2.1 o successive.
3. Se vuoi scaricare un modello, assicurati di
aggiungere Firebase al tuo progetto iOS,
se non l'hai già fatto. Questa operazione non è obbligatoria quando il
modello viene aggregato.
1. Carica il modello
Configurare un'origine modello locale
Per raggruppare il modello con l'app:1. Estrai il modello e i relativi metadati dall'archivio ZIP scaricato dalla console Firebase in una cartella:
your_model_directory |____dict.txt |____manifest.json |____model.tflite
2. Copia la cartella nel progetto Xcode, assicurandoti di selezionare Crea riferimenti alla cartella. Il file del modello e i metadati verranno inclusi nel bundle dell'app e saranno disponibili per ML Kit.
3. Crea l'oggetto
AutoMLImageLabelerLocalModel
, specificando il percorso del
file manifest del modello:
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
Configurare un'origine modello ospitata su Firebase
Per utilizzare il modello ospitato in remoto, crea un oggetto AutoMLImageLabelerRemoteModel
specificando il nome che hai assegnato al modello quando lo hai pubblicato:
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
Quindi, avvia l'attività di download del modello, specificando le condizioni in cui vuoi consentire il download. Se il modello non è sul dispositivo o se è disponibile una versione più recente, l'attività lo scarica in modo asincrono da Firebase:
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
Molte app avviano l'attività di download nel codice di inizializzazione, ma puoi farlo in qualsiasi momento prima di dover utilizzare il modello.
Creare un'etichettatrice di immagini dal modello
Dopo aver configurato le origini del modello, crea un oggetto ImageLabeler
da una di esse.
Se hai solo un modello aggregato localmente, crea un'etichetta dall'oggettoAutoMLImageLabelerLocalModel
e configura la soglia del punteggio di affidabilità che vuoi richiedere (vedi Valutare la modalità:
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
Se hai un modello ospitato in remoto, dovrai verificare che sia stato scaricato prima di eseguirlo. Puoi controllare lo stato del compito di download del modello utilizzando il metodo isModelDownloaded
(remoteModel:) del gestore dei modelli.
Anche se devi confermare questa opzione solo prima di eseguire l'etichettatore, se hai sia un modello ospitato in remoto sia un modello in bundle locale, potrebbe essere sensato eseguire questo controllo durante l'inizializzazione di ImageLabeler
: crea un etichettatore dal modello remoto se è stato scaricato e dal modello locale in caso contrario.
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
Se hai solo un modello ospitato in remoto, devi disattivare le funzionalità correlate al modello, ad esempio disattivare o nascondere parte dell'interfaccia utente, finché non confermi che il modello è stato scaricato.
Puoi ottenere lo stato del download del modello collegando gli osservatori al Centro notifiche predefinito. Assicurati di utilizzare un riferimento debole a self
nel blocco osservatore, poiché i download possono richiedere del tempo e l'oggetto di origine può essere liberato al termine del download. Ad esempio:
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. Prepara l'immagine di input
Crea un oggetto VisionImage
utilizzando un UIImage
o un
CMSampleBuffer
.
Se utilizzi un UIImage
, segui questi passaggi:
- Crea un oggetto
VisionImage
conUIImage
. Assicurati di specificare il valore.orientation
corretto.let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Se utilizzi un CMSampleBuffer
, segui questi passaggi:
-
Specifica l'orientamento dei dati dell'immagine contenuti in
CMSampleBuffer
.Per ottenere l'orientamento dell'immagine:
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Crea un oggetto
VisionImage
utilizzando l'orientamento e l'oggettoCMSampleBuffer
:let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. Esegui l'etichettatore di immagini
In modo asincrono:
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
In modo sincrono:
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. Ricevere informazioni sugli oggetti etichettati
Se l'operazione di etichettatura delle immagini va a buon fine, restituisce un array diImageLabel
. Ogni ImageLabel
rappresenta un elemento contrassegnato nell'immagine. Puoi ottenere la descrizione del testo di ogni etichetta (se disponibile nei metadati del file del modello TensorFlow Lite), il punteggio di affidabilità e l'indice.
Ad esempio:
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
Suggerimenti per migliorare il rendimento in tempo reale
Se vuoi etichettare le immagini in un'applicazione in tempo reale, segui queste linee guida per ottenere le frequenze frame migliori:
- Per l'elaborazione dei frame video, utilizza l'API sincrona
results(in:)
del rilevatore. Chiama questo metodo dalla funzionecaptureOutput(_, didOutput:from:)
diAVCaptureVideoDataOutputSampleBufferDelegate
per ottenere in modo sincrono i risultati dal frame video fornito. MantienialwaysDiscardsLateVideoFrames
diAVCaptureVideoDataOutput
cometrue
per limitare le chiamate al rilevatore. Se un nuovo frame video diventa disponibile durante l'esecuzione del rilevatore, verrà eliminato. - Se utilizzi l'output del rilevatore per sovrapporre la grafica all'immagine di input, ottieni prima il risultato da ML Kit, poi esegui il rendering dell'immagine e la sovrapposizione in un unico passaggio. In questo modo, esegui il rendering sulla superficie di visualizzazione solo una volta per ogni frame di input elaborato. Per un esempio, consulta updatePreviewOverlayViewWithLastFrame nell'esempio di avvio rapido di ML Kit.