Detectar poses com o Kit de ML no Android

O Kit de ML oferece dois SDKs otimizados para detecção de pose.

Nome do SDKpose-detectionpose-detection-accurate
ImplementaçãoO código e os recursos são vinculados de forma estática ao app no momento da build.O código e os recursos são vinculados de forma estática ao app no momento da build.
Impacto do tamanho do app (incluindo código e recursos)~10,1 MB~13,3 MB
DesempenhoPixel 3XL: ~30FPSPixel 3XL: ~23 QPS com CPU, ~30 QPS com GPU

Faça um teste

Antes de começar

  1. No arquivo build.gradle no nível do projeto, inclua o repositório Maven do Google nas seções buildscript e allprojects.
  2. Adicione as dependências das bibliotecas do Android do Kit de ML ao arquivo Gradle do módulo no nível do app, que geralmente é app/build.gradle:

    dependencies {
      // If you want to use the base sdk
      implementation 'com.google.mlkit:pose-detection:18.0.0-beta5'
      // If you want to use the accurate sdk
      implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5'
    }
    

1. Criar uma instância de PoseDetector

PoseDetector opções

Para detectar uma pose em uma imagem, primeiro crie uma instância de PoseDetector e especifique as configurações do detector, se quiser.

Modo de detecção

O PoseDetector opera em dois modos de detecção. Escolha a opção que corresponde ao seu caso de uso.

STREAM_MODE (padrão)
O detector de pose primeiro detecta a pessoa mais proeminente na imagem e depois executa a detecção de pose. Em frames subsequentes, a etapa de detecção de pessoas não será realizada, a menos que a pessoa fique obscura ou não seja mais detectada com alta confiança. O detector de pose vai tentar rastrear a pessoa mais proeminente e retornar a pose dela em cada inferência. Isso reduz a latência e agiliza a detecção. Use esse modo quando quiser detectar a pose em um stream de vídeo.
SINGLE_IMAGE_MODE
O detector de pose vai detectar uma pessoa e executar a detecção de pose. A etapa de detecção de pessoas será executada para cada imagem, portanto, a latência será maior e não haverá rastreamento de pessoas. Use esse modo ao usar a detecção de pose em imagens estáticas ou quando o rastreamento não for necessário.

Configuração do hardware

O PoseDetector oferece suporte a várias configurações de hardware para otimizar o desempenho:

  • CPU: execute o detector usando apenas a CPU.
  • CPU_GPU: execute o detector usando a CPU e a GPU.

Ao criar as opções do detector, você pode usar a API setPreferredHardwareConfigs para controlar a seleção de hardware. Por padrão, todas as configurações de hardware são definidas como preferidas.

O ML Kit considera a disponibilidade, a estabilidade, a correção e a latência de cada configuração e escolhe a melhor das configurações preferidas. Se nenhuma das configurações preferidas for aplicável, a configuração CPU será usada automaticamente como substituto. O ML Kit vai fazer essas verificações e preparação relacionada de uma maneira não bloqueante antes de ativar qualquer aceleração. Portanto, é mais provável que, na primeira vez que o usuário executar o detector, ele use CPU. Depois que toda a preparação for concluída, a melhor configuração será usada nas próximas execuções.

Exemplos de uso de setPreferredHardwareConfigs:

  • Para permitir que o ML Kit escolha a melhor configuração, não chame essa API.
  • Se você não quiser ativar nenhuma aceleração, transmita apenas CPU.
  • Se você quiser usar a GPU para reduzir a carga da CPU, mesmo que ela possa ser mais lenta, transmita apenas CPU_GPU.

Especifique as opções do detector de pose:

// Base pose detector with streaming frames, when depending on the pose-detection sdk
val options = PoseDetectorOptions.Builder()
    .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
    .build()

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
val options = AccuratePoseDetectorOptions.Builder()
    .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
    .build()
// Base pose detector with streaming frames, when depending on the pose-detection sdk
PoseDetectorOptions options =
   new PoseDetectorOptions.Builder()
       .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
       .build();

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
AccuratePoseDetectorOptions options =
   new AccuratePoseDetectorOptions.Builder()
       .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
       .build();

Por fim, crie uma instância de PoseDetector. Transmita as opções especificadas:

val poseDetector = PoseDetection.getClient(options)
PoseDetector poseDetector = PoseDetection.getClient(options);

2. Preparar a imagem de entrada

Para detectar poses em uma imagem, crie um objeto InputImage usando Bitmap, media.Image, ByteBuffer, matriz de bytes ou um arquivo no dispositivo. Em seguida, transmita o objeto InputImage para o PoseDetector.

Para a detecção de pose, use uma imagem com dimensões de pelo menos 480x360 pixels. Se você estiver detectando poses em tempo real, a captura de frames com essa resolução mínima poderá ajudar a reduzir a latência.

É possível criar um objeto InputImage de diferentes origens. Cada uma é explicada abaixo.

Como usar um media.Image

Para criar um objeto InputImage usando um objeto media.Image, como quando você captura uma imagem da câmera de um dispositivo, transmita o objeto media.Image e a rotação da imagem para InputImage.fromMediaImage().

Se você usar a biblioteca CameraX, as classes OnImageCapturedListener e ImageAnalysis.Analyzer vão calcular o valor de rotação automaticamente.

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}
private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se você não usar uma biblioteca de câmera que ofereça o grau de rotação da imagem, será possível calcular usando o grau de rotação do dispositivo e a orientação do sensor da câmera:

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}
private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Em seguida, transmita o objeto media.Image e o valor do grau de rotação para InputImage.fromMediaImage():

val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Como usar um URI de arquivo

Para criar um objeto InputImage com base no URI de um arquivo, transmita o contexto do app e o URI do arquivo para InputImage.fromFilePath(). Isso é útil ao usar uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem no app de galeria dele.

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}
InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Como usar ByteBuffer ou ByteArray

Para criar um objeto InputImage usando um ByteBuffer ou um ByteArray, primeiro calcule o grau de rotação da imagem conforme descrito anteriormente para a entrada de media.Image. Em seguida, crie o objeto InputImage com o buffer ou a matriz, com a altura, a largura, o formato de codificação de cores e o grau de rotação da imagem:

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Como usar um Bitmap

Para criar um objeto InputImage usando um objeto Bitmap, faça a seguinte declaração:

val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

A imagem é representada por um objeto Bitmap com os graus de rotação.

3. Processar a imagem

Transmita o objeto InputImage preparado para o método process do PoseDetector.

Task<Pose> result = poseDetector.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }
Task<Pose> result =
        poseDetector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<Pose>() {
                            @Override
                            public void onSuccess(Pose pose) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Receber informações sobre a pose detectada

Se uma pessoa for detectada na imagem, a API de detecção de pose vai retornar um objeto Pose com 33 PoseLandmarks.

Se a pessoa não estiver completamente dentro da imagem, o modelo vai atribuir as coordenadas dos pontos de referência ausentes fora do frame e vai atribuir a elas valores de InFrameConfidence baixos.

Se nenhuma pessoa for detectada no frame, o objeto Pose não conterá PoseLandmarks.

// Get all PoseLandmarks. If no person was detected, the list will be empty
val allPoseLandmarks = pose.getAllPoseLandmarks()

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER)
val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER)
val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW)
val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW)
val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST)
val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST)
val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP)
val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP)
val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE)
val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE)
val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE)
val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE)
val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY)
val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY)
val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX)
val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX)
val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB)
val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB)
val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL)
val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL)
val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX)
val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX)
val nose = pose.getPoseLandmark(PoseLandmark.NOSE)
val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER)
val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE)
val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER)
val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER)
val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE)
val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER)
val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR)
val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR)
val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH)
val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
// Get all PoseLandmarks. If no person was detected, the list will be empty
List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks();

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER);
PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER);
PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW);
PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW);
PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST);
PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST);
PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP);
PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP);
PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE);
PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE);
PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE);
PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE);
PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY);
PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY);
PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX);
PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX);
PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB);
PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB);
PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL);
PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL);
PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX);
PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX);
PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE);
PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER);
PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE);
PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER);
PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER);
PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE);
PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER);
PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR);
PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR);
PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH);
PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);

Dicas para melhorar a performance

A qualidade dos resultados depende da qualidade da imagem de entrada:

  • Para que o Kit de ML detecte a pose com precisão, a pessoa na imagem precisa ser representada por dados de pixel suficientes. Para ter a melhor performance, o assunto precisa ter pelo menos 256 x 256 pixels.
  • Se você detectar a pose em um aplicativo em tempo real, considere as dimensões gerais das imagens de entrada. Já que as imagens menores podem ser processadas mais rapidamente, reduza a latência capturando imagens em resoluções menores, mas lembre-se dos requisitos de resolução acima e faça o objeto ocupar o máximo possível da imagem.
  • Uma imagem com foco inadequado também pode afetar a precisão. Se os resultados não forem aceitáveis, peça para o usuário recapturar a imagem.

Se você quiser usar a detecção de pose em um aplicativo em tempo real, siga estas diretrizes para conseguir as melhores taxas de frames:

  • Use o SDK de detecção de pose básico e STREAM_MODE.
  • Capture imagens em uma resolução menor. No entanto, lembre-se também dos requisitos de dimensão de imagem da API.
  • Se você usar a API Camera ou camera2, limite as chamadas para o detector. Se um novo frame de vídeo ficar disponível durante a execução do detector, descarte esse frame. Consulte a classe VisionProcessorBase no app de amostra do guia de início rápido para conferir um exemplo.
  • Se você usar a API CameraX, verifique se a estratégia de backpressure está definida como o valor padrão ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Isso garante que apenas uma imagem seja enviada para análise por vez. Se mais imagens forem produzidas quando o analisador estiver ocupado, elas serão descartadas automaticamente e não serão enfileiradas para envio. Quando a imagem que está sendo analisada é fechada chamando ImageProxy.close(), a próxima imagem mais recente é entregue.
  • Se você usar a saída do detector para sobrepor elementos gráficos na imagem de entrada, primeiro acesse o resultado do Kit de ML. Em seguida, renderize a imagem e faça a sobreposição de uma só vez. Isso renderiza a superfície de exibição apenas uma vez para cada frame de entrada. Consulte as classes CameraSourcePreview e GraphicOverlay no app de exemplo do guia de início rápido para conferir um exemplo.
  • Se você usar a API Camera2, capture imagens no formato ImageFormat.YUV_420_888. Se você usar a API Camera mais antiga, capture imagens no formato ImageFormat.NV21.

Próximas etapas