ML Kit는 셀카 세분화에 최적화된 SDK를 제공합니다.
셀카 세그먼터 확장 소재는 빌드 시 앱에 정적으로 연결됩니다. 이렇게 하면 앱 다운로드 크기가 약 4.5MB 증가하며 API 지연 시간은 Pixel 4에서 측정한 입력 이미지 크기에 따라 25ms~65ms로 달라질 수 있습니다.
사용해 보기
- 샘플 앱을 사용해 이 API의 사용 예를 살펴보세요.
시작하기 전에
- 프로젝트 수준
build.gradle
파일의buildscript
및allprojects
섹션에 Google의 Maven 저장소가 포함되어야 합니다. - 모듈의 앱 수준 Gradle 파일(일반적으로
app/build.gradle
)에 ML Kit Android 라이브러리의 종속 항목을 추가합니다.
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. Segmenter 인스턴스 만들기
세그먼터 옵션
이미지에서 세분화를 수행하려면 먼저 다음 옵션을 지정하여 Segmenter
의 인스턴스를 만듭니다.
감지기 모드
Segmenter
는 두 가지 모드로 작동합니다. 사용 사례에 맞는 모델을 선택해야 합니다.
STREAM_MODE (default)
이 모드는 동영상이나 카메라에서 프레임을 스트리밍하도록 설계되었습니다. 이 모드에서는 세그먼터가 이전 프레임의 결과를 활용하여 더 부드러운 세분화 결과를 반환합니다.
SINGLE_IMAGE_MODE
이 모드는 관련 없는 단일 이미지에 맞게 설계되었습니다. 이 모드에서는 세그먼터가 프레임에 대해 평활화 없이 각 이미지를 독립적으로 처리합니다.
원시 크기 마스크 사용 설정
세그먼터에 모델 출력 크기와 일치하는 원시 크기 마스크를 반환하도록 요청합니다.
원시 마스크 크기 (예: 256x256)는 일반적으로 입력 이미지 크기보다 작습니다. 이 옵션을 사용 설정할 때 SegmentationMask#getWidth()
및 SegmentationMask#getHeight()
를 호출하여 마스크 크기를 가져오세요.
이 옵션을 지정하지 않으면 세그먼터가 입력 이미지 크기에 맞게 원시 마스크의 크기를 조정합니다. 맞춤 리사이징 로직을 적용하려는 경우 또는 사용 사례에 리사이징이 필요하지 않은 경우 이 옵션을 사용하는 것이 좋습니다.
세그먼터 옵션을 지정합니다.
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
Segmenter
의 인스턴스를 생성하세요. 지정한 옵션을 전달합니다.
val segmenter = Segmentation.getClient(options)
Segmenter segmenter = Segmentation.getClient(options);
2. 입력 이미지 준비
이미지에서 세분화를 실행하려면 Bitmap
, media.Image
, ByteBuffer
, 바이트 배열 또는 기기의 파일에서 InputImage
객체를 만듭니다.
다양한 소스로 InputImage
객체를 만들 수 있습니다. 각 소스는 아래에 설명되어 있습니다.
media.Image
사용
기기의 카메라에서 이미지를 캡처할 때와 같이 media.Image
객체에서 InputImage
객체를 만들려면 media.Image
객체 및 이미지의 회전 각도값을 InputImage.fromMediaImage()
에 전달합니다.
CameraX 라이브러리를 사용하는 경우 OnImageCapturedListener
및 ImageAnalysis.Analyzer
클래스가 회전 값을 자동으로 계산합니다.
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
이미지 회전 각도를 제공하는 카메라 라이브러리를 사용하지 않는 경우 기기의 카메라 센서 방향 및 기기 회전 각도에서 이미지 회전 각도를 계산할 수 있습니다.
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
그런 다음 media.Image
객체 및 회전 각도값을 InputImage.fromMediaImage()
에 전달합니다.
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
파일 URI 사용
파일 URI에서 InputImage
객체를 만들려면 앱 컨텍스트 및 파일 URI를 InputImage.fromFilePath()
에 전달합니다. ACTION_GET_CONTENT
인텐트를 사용하여 사용자에게 갤러리 앱에서 이미지를 선택하라는 메시지를 표시할 때 유용한 방법입니다.
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
InputImage image;
try {
image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
e.printStackTrace();
}
ByteBuffer
또는 ByteArray
사용
ByteBuffer
또는 ByteArray
에서 InputImage
객체를 만들려면 먼저 앞서 media.Image
입력에서 설명한 대로 이미지 회전 각도를 계산합니다.
그런 다음 이미지의 높이, 너비, 색상 인코딩 형식, 회전 각도와 함께 버퍼 또는 배열을 사용하여 InputImage
객체를 만듭니다.
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
사용
Bitmap
객체에서 InputImage
객체를 만들려면 다음과 같이 선언합니다.
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
이미지는 회전 각도와 함께 Bitmap
객체로 표현됩니다.
3. 이미지 처리
준비된 InputImage
객체를 Segmenter
의 process
메서드에 전달합니다.
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. 세분화 결과 가져오기
다음과 같이 분류 결과를 가져올 수 있습니다.
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
세분화 결과를 사용하는 방법의 전체 예시는 ML Kit 빠른 시작 샘플을 참고하세요.
성능 개선을 위한 팁
결과 품질은 입력 이미지의 품질에 따라 다릅니다.
- ML Kit가 정확한 세분화 결과를 얻으려면 이미지가 256x256픽셀 이상이어야 합니다.
- 이미지 초점이 잘 맞지 않으면 정확도에 영향을 미칠 수도 있습니다. 허용 가능한 수준의 결과를 얻지 못하는 경우 사용자에게 이미지를 다시 캡처하도록 요청합니다.
실시간 애플리케이션에서 세분화를 사용하려면 최상의 프레임 속도를 얻으려면 다음 안내를 따르세요.
STREAM_MODE
을 사용합니다.- 낮은 해상도에서 이미지를 캡처하는 것이 좋습니다. 단, 이 API의 이미지 크기 요구사항도 유의해야 합니다.
- 원시 크기 마스크 옵션을 사용 설정하고 모든 크기 조정 로직을 함께 결합해 보세요. 예를 들어 API가 먼저 입력 이미지 크기에 맞게 마스크 크기를 조절한 다음 표시할 뷰 크기에 맞게 다시 조절하도록 하는 대신 원시 크기 마스크를 요청하고 이 두 단계를 하나로 결합합니다.
Camera
또는camera2
API를 사용하는 경우 인식기 호출을 제한합니다. 감지기가 실행 중일 때 새 동영상 프레임을 사용할 수 있게 되면 프레임을 삭제합니다. 관련 예시는 빠른 시작 샘플 앱에서VisionProcessorBase
클래스를 참고하세요.CameraX
API를 사용하는 경우 백프레셔 전략이 기본값인ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
로 설정되어 있는지 확인합니다. 이렇게 하면 한 번에 하나의 이미지만 분석을 위해 전송됩니다. 분석 도구가 사용 중이면 더 많은 이미지가 생성되더라도 자동으로 삭제되고 전송 대기열에 추가되지 않습니다. ImageProxy.close()를 호출하여 분석 중인 이미지가 닫히면 다음 최신 이미지가 전송됩니다.- 인식기 출력을 사용하여 입력 이미지에 그래픽을 오버레이하는 경우 먼저 ML Kit에서 결과를 가져온 후 이미지를 렌더링하고 단일 단계로 오버레이합니다. 이렇게 하면 입력 프레임별로 한 번만 디스플레이 표면에 렌더링됩니다. 관련 예시는 빠른 시작 샘플 앱에서
CameraSourcePreview
및GraphicOverlay
클래스를 참고하세요. - Camera2 API를 사용할 경우
ImageFormat.YUV_420_888
형식으로 이미지를 캡처합니다. 이전 Camera API를 사용하는 경우ImageFormat.NV21
형식으로 이미지를 캡처합니다.