Segmentação de selfie com o Kit de ML no Android

O ML Kit oferece um SDK otimizado para segmentação de selfies.

Os recursos do Selfie Segmenter são vinculados de forma estática ao app no momento da criação. Isso vai aumentar o tamanho do download do app em cerca de 4,5 MB, e a latência da API pode variar de 25 a 65 ms, dependendo do tamanho da imagem de entrada, conforme medido em um Pixel 4.

Faça um teste

Antes de começar

  1. No arquivo build.gradle no nível do projeto, inclua o repositório Maven do Google nas seções buildscript e allprojects.
  2. Adicione as dependências das bibliotecas do Android do Kit de ML ao arquivo Gradle do módulo no nível do app, que geralmente é app/build.gradle:
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

1. Criar uma instância do Segmenter

Opções do segmentador

Para fazer a segmentação em uma imagem, primeiro crie uma instância de Segmenter especificando as seguintes opções.

Modo de detecção

O Segmenter opera em dois modos. Escolha a opção que melhor se adapta ao seu caso de uso.

STREAM_MODE (default)

Esse modo é projetado para streaming de frames de vídeo ou câmera. Nesse modo, o segmentador aproveita os resultados de frames anteriores para retornar resultados de segmentação mais suaves.

SINGLE_IMAGE_MODE

Esse modo é projetado para imagens únicas não relacionadas. Nesse modo, o segmentador processa cada imagem de forma independente, sem suavização sobre os frames.

Ativar máscara de tamanho bruto

Pede ao segmentador para retornar a máscara de tamanho bruto que corresponde ao tamanho de saída do modelo.

O tamanho da máscara bruta (por exemplo, 256 x 256) geralmente é menor que o tamanho da imagem de entrada. Chame SegmentationMask#getWidth() e SegmentationMask#getHeight() para conferir o tamanho da máscara ao ativar essa opção.

Sem especificar essa opção, o segmentador vai redimensionar a máscara bruta para corresponder ao tamanho da imagem de entrada. Use essa opção se quiser aplicar uma lógica personalizada de redimensionamento ou se não for necessário redimensionar para seu caso de uso.

Especifique as opções de segmentação:

val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()
SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Crie uma instância de Segmenter. Transmita as opções especificadas:

val segmenter = Segmentation.getClient(options)
Segmenter segmenter = Segmentation.getClient(options);

2. Preparar a imagem de entrada

Para realizar a segmentação em uma imagem, crie um objeto InputImage usando Bitmap, media.Image, ByteBuffer, matriz de bytes ou um arquivo no dispositivo.

É possível criar um objeto InputImage de diferentes origens. Cada uma é explicada abaixo.

Como usar um media.Image

Para criar um objeto InputImage usando um objeto media.Image, como quando você captura uma imagem da câmera de um dispositivo, transmita o objeto media.Image e a rotação da imagem para InputImage.fromMediaImage().

Se você usar a biblioteca CameraX, as classes OnImageCapturedListener e ImageAnalysis.Analyzer vão calcular o valor de rotação automaticamente.

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}
private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se você não usar uma biblioteca de câmera que ofereça o grau de rotação da imagem, será possível calcular usando o grau de rotação do dispositivo e a orientação do sensor da câmera:

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}
private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Em seguida, transmita o objeto media.Image e o valor do grau de rotação para InputImage.fromMediaImage():

val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Como usar um URI de arquivo

Para criar um objeto InputImage com base no URI de um arquivo, transmita o contexto do app e o URI do arquivo para InputImage.fromFilePath(). Isso é útil ao usar uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem no app de galeria dele.

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}
InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Como usar ByteBuffer ou ByteArray

Para criar um objeto InputImage usando um ByteBuffer ou um ByteArray, primeiro calcule o grau de rotação da imagem conforme descrito anteriormente para a entrada de media.Image. Em seguida, crie o objeto InputImage com o buffer ou a matriz, com a altura, a largura, o formato de codificação de cores e o grau de rotação da imagem:

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Como usar um Bitmap

Para criar um objeto InputImage usando um objeto Bitmap, faça a seguinte declaração:

val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

A imagem é representada por um objeto Bitmap com os graus de rotação.

3. Processar a imagem

Transmita o objeto InputImage preparado para o método process do Segmenter.

Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }
Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Conferir o resultado da segmentação

Para receber o resultado da segmentação, faça o seguinte:

val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}
ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

Para conferir um exemplo completo de como usar os resultados de segmentação, consulte a amostra do guia de início rápido do Kit de ML.

Dicas para melhorar a performance

A qualidade dos resultados depende da qualidade da imagem de entrada:

  • Para que o Kit de ML consiga um resultado de segmentação preciso, a imagem precisa ter pelo menos 256 x 256 pixels.
  • Uma imagem com foco inadequado também pode afetar a precisão. Se os resultados não forem aceitáveis, peça para o usuário recapturar a imagem.

Se você quiser usar a segmentação em um aplicativo em tempo real, siga estas diretrizes para conseguir as melhores taxas de frames:

  • Use STREAM_MODE.
  • Capture imagens em uma resolução menor. No entanto, lembre-se também dos requisitos de dimensão de imagem da API.
  • Ative a opção de máscara de tamanho bruto e combine toda a lógica de redimensionamento. Por exemplo, em vez de permitir que a API redimensione a máscara para corresponder ao tamanho da imagem de entrada primeiro e depois redimensionar novamente para corresponder ao tamanho da visualização para exibição, solicite a máscara de tamanho bruto e combine essas duas etapas em uma.
  • Se você usar a API Camera ou camera2, limite as chamadas para o detector. Se um novo frame de vídeo ficar disponível durante a execução do detector, descarte esse frame. Consulte a classe VisionProcessorBase no app de amostra do guia de início rápido para conferir um exemplo.
  • Se você usar a API CameraX, verifique se a estratégia de backpressure está definida como o valor padrão ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Isso garante que apenas uma imagem seja enviada para análise por vez. Se mais imagens forem produzidas quando o analisador estiver ocupado, elas serão descartadas automaticamente e não serão enfileiradas para envio. Quando a imagem que está sendo analisada é fechada chamando ImageProxy.close(), a próxima imagem mais recente é entregue.
  • Se você usar a saída do detector para sobrepor elementos gráficos na imagem de entrada, primeiro acesse o resultado do Kit de ML. Em seguida, renderize a imagem e faça a sobreposição de uma só vez. Isso renderiza a superfície de exibição apenas uma vez para cada frame de entrada. Consulte as classes CameraSourcePreview e GraphicOverlay no app de exemplo do guia de início rápido para conferir um exemplo.
  • Se você usar a API Camera2, capture imagens no formato ImageFormat.YUV_420_888. Se você usar a API Camera mais antiga, capture imagens no formato ImageFormat.NV21.