จดจำข้อความในรูปภาพด้วย ML Kit บน Android

คุณใช้ ML Kit เพื่อจดจำข้อความในรูปภาพหรือวิดีโอได้ เช่น ข้อความของ ป้ายจราจรบนท้องถนน ลักษณะหลักของฟีเจอร์นี้มีดังนี้

ฟีเจอร์ แบบแยก รวมกลุ่ม
ชื่อห้องสมุด com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:text-recognition

com.google.mlkit:text-recognition-chinese

com.google.mlkit:text-recognition-devanagari

com.google.mlkit:text-recognition-japanese

com.google.mlkit:text-recognition-korean

การใช้งาน ระบบจะดาวน์โหลดโมเดลแบบไดนามิกผ่านบริการ Google Play โมเดลจะลิงก์กับแอปแบบคงที่ในเวลาที่สร้าง
ขนาดแอป ขนาดเพิ่มขึ้นประมาณ 260 KB ต่อสถาปัตยกรรมสคริปต์ ขนาดเพิ่มขึ้นประมาณ 4 MB ต่อสคริปต์ต่อสถาปัตยกรรม
เวลาเริ่มต้น คุณอาจต้องรอให้ระบบดาวน์โหลดโมเดลก่อนจึงจะใช้งานได้เป็นครั้งแรก โมเดลพร้อมใช้งานทันที
ประสิทธิภาพ เรียลไทม์ในอุปกรณ์ส่วนใหญ่สำหรับคลังสคริปต์ละติน แต่จะช้ากว่าสำหรับคลังอื่นๆ เรียลไทม์ในอุปกรณ์ส่วนใหญ่สำหรับคลังสคริปต์ละติน แต่จะช้ากว่าสำหรับคลังอื่นๆ

ลองเลย

  • ลองใช้แอปตัวอย่างเพื่อดูตัวอย่างการใช้งาน API นี้
  • ลองใช้โค้ดด้วยตัวคุณเองด้วย Codelab

ก่อนเริ่มต้น

  1. ในไฟล์ build.gradle ระดับโปรเจ็กต์ ให้ตรวจสอบว่าได้รวมที่เก็บ Maven ของ Google ไว้ในทั้งส่วน buildscript และ allprojects
  2. เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit สำหรับ Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งโดยปกติคือ app/build.gradle

    สำหรับการรวมโมเดลกับแอป

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.1'
    }
    

    สำหรับการใช้โมเดลในบริการ Google Play

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1'
    }
    
  3. หากเลือกใช้โมเดลในบริการ Google Play คุณจะ กำหนดค่าแอปให้ดาวน์โหลดโมเดลลงในอุปกรณ์โดยอัตโนมัติได้หลังจาก ติดตั้งแอปจาก Play Store แล้ว โดยเพิ่มการประกาศต่อไปนี้ลงในไฟล์ AndroidManifest.xml ของแอป

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    นอกจากนี้ คุณยังตรวจสอบความพร้อมใช้งานของโมเดลและขอให้ดาวน์โหลดผ่าน ModuleInstallClient API ของบริการ Google Play ได้ด้วย หากคุณไม่ได้เปิดใช้การดาวน์โหลดโมเดลในเวลาติดตั้ง หรือขอการดาวน์โหลดอย่างชัดเจน ระบบจะดาวน์โหลดโมเดลในครั้งแรก ที่คุณเรียกใช้เครื่องสแกน คำขอที่คุณส่งก่อนที่การดาวน์โหลดจะเสร็จสมบูรณ์จะไม่แสดงผลลัพธ์

1. สร้างอินสแตนซ์ของ TextRecognizer

สร้างอินสแตนซ์ของ TextRecognizer โดยส่งตัวเลือก ที่เกี่ยวข้องกับไลบรารีที่คุณประกาศการอ้างอิงไว้ข้างต้น

Kotlin

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Java

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. เตรียมรูปภาพอินพุต

หากต้องการจดจำข้อความในรูปภาพ ให้สร้างออบเจ็กต์ InputImage จาก Bitmap, media.Image, ByteBuffer, อาร์เรย์ไบต์ หรือไฟล์ใน อุปกรณ์ จากนั้นส่งออบเจ็กต์ InputImage ไปยังเมธอด processImage ของ TextRecognizer

คุณสร้างInputImage ออบเจ็กต์จากแหล่งที่มาต่างๆ ได้ โดยแต่ละแหล่งที่มามีคำอธิบายอยู่ด้านล่าง

การใช้ media.Image

หากต้องการสร้างออบเจ็กต์ InputImage จากออบเจ็กต์ media.Image เช่น เมื่อจับภาพจากกล้องของอุปกรณ์ ให้ส่งออบเจ็กต์ media.Image และการหมุนของรูปภาพไปยัง InputImage.fromMediaImage()

หากใช้ไลบรารี CameraX คลาส OnImageCapturedListener และ ImageAnalysis.Analyzer จะคํานวณค่าการหมุน ให้คุณ

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

หากไม่ได้ใช้คลังกล้องที่ให้องศาการหมุนของรูปภาพ คุณ สามารถคำนวณได้จากองศาการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้อง ในอุปกรณ์

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

จากนั้นส่งออบเจ็กต์ media.Image และค่าองศาการหมุนไปยัง InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

การใช้ URI ของไฟล์

หากต้องการสร้างออบเจ็กต์ InputImage จาก URI ของไฟล์ ให้ส่งบริบทของแอปและ URI ของไฟล์ไปยัง InputImage.fromFilePath() ซึ่งจะมีประโยชน์เมื่อคุณ ใช้ACTION_GET_CONTENT Intent เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรี

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

การใช้ ByteBuffer หรือ ByteArray

หากต้องการสร้างออบเจ็กต์ InputImage จาก ByteBuffer หรือ ByteArray ให้คำนวณองศาการหมุนของรูปภาพก่อน ตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image จากนั้นสร้างออบเจ็กต์ InputImage ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

การใช้ Bitmap

หากต้องการสร้างออบเจ็กต์ InputImage จากออบเจ็กต์ Bitmap ให้ประกาศดังนี้

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

รูปภาพแสดงด้วยออบเจ็กต์ Bitmap พร้อมกับองศาการหมุน

3. ประมวลผลรูปภาพ

ส่งรูปภาพไปยังเมธอด process

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. แยกข้อความจากบล็อกข้อความที่ระบบจดจำ

หากการดำเนินการจดจำข้อความสำเร็จ ระบบจะส่งออบเจ็กต์ Text ไปยัง เครื่องมือฟังที่สำเร็จ ออบเจ็กต์ Text มีข้อความทั้งหมดที่ระบบจดจำได้ใน รูปภาพ และมีออบเจ็กต์ TextBlock ตั้งแต่ 0 รายการขึ้นไป

โดย TextBlock แต่ละรายการแสดงถึงบล็อกข้อความสี่เหลี่ยมผืนผ้า ซึ่งมีออบเจ็กต์ Line 0 รายการขึ้นไป ออบเจ็กต์ Line แต่ละรายการแสดงถึงข้อความ 1 บรรทัด ซึ่งมีออบเจ็กต์ Element อย่างน้อย 1 รายการ ออบเจ็กต์ Element แต่ละรายการแสดงถึงคำหรือเอนทิตีที่คล้ายคำ ซึ่งมีออบเจ็กต์ Symbolตั้งแต่ 0 รายการขึ้นไป ออบเจ็กต์ Symbol แต่ละรายการแสดงถึงอักขระ ตัวเลข หรือเอนทิตีที่คล้ายคำ

สำหรับออบเจ็กต์ TextBlock, Line, Element และ Symbol แต่ละรายการ คุณจะดูข้อความที่ระบบจดจำในภูมิภาค พิกัดขอบเขตของภูมิภาค และแอตทริบิวต์อื่นๆ อีกมากมาย เช่น ข้อมูลการหมุน คะแนนความเชื่อมั่น ฯลฯ ได้

เช่น

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

หลักเกณฑ์เกี่ยวกับรูปภาพที่ป้อน

  • รูปภาพอินพุตต้องมีข้อความที่แสดงโดยข้อมูลพิกเซลที่เพียงพอเพื่อให้ ML Kit จดจำข้อความได้อย่างถูกต้อง โดยอักขระแต่ละตัวควรมีขนาดอย่างน้อย 16x16 พิกเซล โดยทั่วไปแล้ว การทำให้อักขระมีขนาดใหญ่กว่า 24x24 พิกเซล ไม่ได้ช่วยเพิ่มความแม่นยำ

    เช่น รูปภาพขนาด 640x480 อาจเหมาะกับการสแกนนามบัตร ที่กินพื้นที่ความกว้างทั้งหมดของรูปภาพ หากต้องการสแกนเอกสารที่พิมพ์บน กระดาษขนาด Letter คุณอาจต้องใช้รูปภาพขนาด 720x1280 พิกเซล

  • โฟกัสของรูปภาพที่ไม่ดีอาจส่งผลต่อความแม่นยำในการจดจำข้อความ หากคุณไม่ได้รับผลลัพธ์ที่ยอมรับได้ ให้ลองขอให้ผู้ใช้ถ่ายภาพใหม่

  • หากคุณจดจำข้อความในแอปพลิเคชันแบบเรียลไทม์ คุณควรพิจารณาขนาดโดยรวมของรูปภาพอินพุต รูปภาพขนาดเล็ก จะประมวลผลได้เร็วกว่า หากต้องการลดเวลาในการตอบสนอง ให้ตรวจสอบว่าข้อความครอบคลุมพื้นที่มากที่สุดเท่าที่จะเป็นไปได้ในรูปภาพ และถ่ายภาพที่ความละเอียดต่ำกว่า (โปรดคำนึงถึงข้อกำหนดด้านความแม่นยำที่กล่าวถึงข้างต้น) ดูข้อมูลเพิ่มเติมได้ที่ เคล็ดลับในการปรับปรุงประสิทธิภาพ

เคล็ดลับในการปรับปรุงประสิทธิภาพ

  • หากคุณใช้ API ของ Camera หรือ camera2 ให้จำกัดการเรียกไปยังเครื่องตรวจจับ หากมีเฟรมวิดีโอใหม่ ขณะที่เครื่องตรวจจับทำงาน ให้ทิ้งเฟรม ดูตัวอย่างได้ที่คลาส VisionProcessorBase ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็ว
  • หากคุณใช้ CameraX API โปรดตรวจสอบว่าได้ตั้งค่ากลยุทธ์การควบคุมปริมาณการรับส่งเป็นค่าเริ่มต้น ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST ซึ่งจะรับประกันว่าระบบจะส่งรูปภาพเพียงรูปเดียวเพื่อวิเคราะห์ในแต่ละครั้ง หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ทำงานอยู่ ระบบจะทิ้งรูปภาพเหล่านั้นโดยอัตโนมัติและจะไม่จัดคิวเพื่อส่ง เมื่อปิดรูปภาพที่กำลังวิเคราะห์โดยเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป
  • หากคุณใช้เอาต์พุตของเครื่องตรวจจับเพื่อซ้อนทับกราฟิกบน รูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงรูปภาพ และซ้อนทับในขั้นตอนเดียว ซึ่งจะแสดงในพื้นผิวการแสดงผล เพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุต ดูตัวอย่างได้ที่คลาส CameraSourcePreview และ GraphicOverlay ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็ว
  • หากใช้ API ของ Camera2 ให้ถ่ายภาพในรูปแบบ ImageFormat.YUV_420_888 หากใช้ Camera API เวอร์ชันเก่า ให้ถ่ายภาพในรูปแบบ ImageFormat.NV21
  • ลองถ่ายภาพที่ความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึง ข้อกำหนดด้านขนาดรูปภาพของ API นี้ด้วย