Bạn có thể dùng Bộ công cụ máy học để nhận dạng văn bản trong hình ảnh hoặc video, chẳng hạn như văn bản trên biển báo đường phố. Các đặc điểm chính của tính năng này là:
Tính năng | Không được kết hợp | Theo cụm |
---|---|---|
Tên thư viện | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
Triển khai | Mô hình được tải xuống linh hoạt thông qua Dịch vụ Google Play. | Mô hình được liên kết tĩnh với ứng dụng của bạn tại thời điểm tạo. |
Kích thước ứng dụng | Kích thước tăng khoảng 260 KB cho mỗi cấu trúc tập lệnh. | Kích thước tăng khoảng 4 MB cho mỗi tập lệnh trên mỗi cấu trúc. |
Thời gian khởi chạy | Có thể phải đợi mô hình tải xuống trước khi sử dụng lần đầu. | Mô hình này có sẵn ngay lập tức. |
Hiệu suất | Thời gian thực trên hầu hết các thiết bị đối với thư viện sử dụng chữ Latinh, chậm hơn đối với các thiết bị khác. | Thời gian thực trên hầu hết các thiết bị đối với thư viện sử dụng chữ Latinh, chậm hơn đối với các thiết bị khác. |
Dùng thử
- Hãy dùng thử ứng dụng mẫu để xem ví dụ về cách sử dụng API này.
- Hãy tự mình thử đoạn mã này bằng lớp học lập trình.
Trước khi bắt đầu
- Trong tệp
build.gradle
cấp dự án, hãy nhớ thêm kho lưu trữ Maven của Google vào cả hai mụcbuildscript
vàallprojects
. Thêm các phần phụ thuộc cho thư viện ML Kit Android vào tệp gradle cấp ứng dụng của mô-đun, thường là
app/build.gradle
:Để gói mô hình với ứng dụng của bạn:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Để sử dụng mô hình này trong Dịch vụ Google Play:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
Nếu chọn sử dụng mô hình trong Dịch vụ của Google Play, bạn có thể định cấu hình ứng dụng để tự động tải mô hình xuống thiết bị sau khi ứng dụng được cài đặt từ Cửa hàng Play. Để thực hiện việc này, hãy thêm khai báo sau vào tệp
AndroidManifest.xml
của ứng dụng:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
Bạn cũng có thể kiểm tra rõ ràng phạm vi cung cấp của mô hình và yêu cầu tải xuống thông qua ModuleInstallClient API của Dịch vụ Google Play. Nếu bạn không bật tính năng tải mô hình xuống tại thời điểm cài đặt hoặc yêu cầu tải xuống rõ ràng, thì mô hình sẽ được tải xuống vào lần đầu tiên bạn chạy trình quét. Những yêu cầu bạn đưa ra trước khi quá trình tải xuống hoàn tất sẽ không mang lại kết quả.
1. Tạo một thực thể của TextRecognizer
Tạo một thực thể của TextRecognizer
, truyền các lựa chọn liên quan đến thư viện mà bạn đã khai báo một phần phụ thuộc ở trên:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. Chuẩn bị hình ảnh đầu vào
Để nhận dạng văn bản trong hình ảnh, hãy tạo một đối tượng InputImage
từ Bitmap
, media.Image
, ByteBuffer
, mảng byte hoặc một tệp trên thiết bị. Sau đó, hãy truyền đối tượng InputImage
đến phương thức processImage
của TextRecognizer
.
Bạn có thể tạo một đối tượng InputImage
từ nhiều nguồn, mỗi nguồn được giải thích bên dưới.
Sử dụng media.Image
Để tạo một đối tượng InputImage
từ một đối tượng media.Image
, chẳng hạn như khi bạn chụp ảnh bằng camera của thiết bị, hãy truyền đối tượng media.Image
và hướng xoay của hình ảnh đến InputImage.fromMediaImage()
.
Nếu bạn sử dụng thư viện
CameraX, các lớp OnImageCapturedListener
và ImageAnalysis.Analyzer
sẽ tính toán giá trị xoay cho bạn.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Nếu không dùng thư viện máy ảnh cho bạn biết độ xoay của hình ảnh, bạn có thể tính độ xoay đó từ độ xoay của thiết bị và hướng của cảm biến camera trong thiết bị:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Sau đó, hãy truyền đối tượng media.Image
và giá trị độ xoay đến InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Sử dụng URI tệp
Để tạo một đối tượng InputImage
từ một URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp đến InputImage.fromFilePath()
. Điều này hữu ích khi bạn dùng ý định ACTION_GET_CONTENT
để nhắc người dùng chọn một hình ảnh trong ứng dụng thư viện của họ.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Sử dụng ByteBuffer
hoặc ByteArray
Để tạo một đối tượng InputImage
từ ByteBuffer
hoặc ByteArray
, trước tiên, hãy tính độ xoay của hình ảnh như mô tả trước đó cho dữ liệu đầu vào media.Image
.
Sau đó, hãy tạo đối tượng InputImage
bằng vùng đệm hoặc mảng, cùng với chiều cao, chiều rộng, định dạng mã hoá màu và độ xoay của hình ảnh:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Sử dụng Bitmap
Để tạo đối tượng InputImage
từ đối tượng Bitmap
, hãy khai báo như sau:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Hình ảnh được biểu thị bằng một đối tượng Bitmap
cùng với độ xoay.
3. Xử lý hình ảnh
Truyền hình ảnh đến phương thức process
:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Trích xuất văn bản từ các khối văn bản được nhận dạng
Nếu thao tác nhận dạng văn bản thành công, một đối tượng Text
sẽ được truyền đến trình nghe thành công. Đối tượng Text
chứa toàn bộ văn bản được nhận dạng trong hình ảnh và không có hoặc có nhiều đối tượng TextBlock
.
Mỗi TextBlock
đại diện cho một khối văn bản hình chữ nhật, chứa từ 0 đối tượng Line
trở lên. Mỗi đối tượng Line
đại diện cho một dòng văn bản, chứa từ 0 trở lên đối tượng Element
. Mỗi đối tượng Element
đại diện cho một từ hoặc một thực thể giống từ, chứa từ 0 đối tượng Symbol
trở lên. Mỗi đối tượng Symbol
đại diện cho một ký tự, chữ số hoặc thực thể giống như từ.
Đối với mỗi đối tượng TextBlock
, Line
, Element
và Symbol
, bạn có thể nhận được văn bản được nhận dạng trong khu vực, toạ độ đường viền của khu vực và nhiều thuộc tính khác như thông tin xoay, điểm số độ tin cậy, v.v.
Ví dụ:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Nguyên tắc về hình ảnh đầu vào
-
Để Bộ công cụ học máy nhận dạng chính xác văn bản, hình ảnh đầu vào phải chứa văn bản được biểu thị bằng đủ dữ liệu pixel. Tốt nhất là mỗi ký tự phải có kích thước tối thiểu là 16x16 pixel. Nhìn chung, không có lợi ích nào về độ chính xác khi các ký tự lớn hơn 24x24 pixel.
Ví dụ: hình ảnh 640x480 có thể phù hợp để quét một danh thiếp chiếm toàn bộ chiều rộng của hình ảnh. Để quét một tài liệu được in trên giấy cỡ chữ, bạn có thể cần hình ảnh có kích thước 720x1280 pixel.
-
Hình ảnh bị mất nét có thể ảnh hưởng đến độ chính xác của tính năng nhận dạng văn bản. Nếu bạn không nhận được kết quả chấp nhận được, hãy thử yêu cầu người dùng chụp lại hình ảnh.
-
Nếu đang nhận dạng văn bản trong một ứng dụng theo thời gian thực, bạn nên cân nhắc kích thước tổng thể của hình ảnh đầu vào. Các hình ảnh nhỏ hơn có thể được xử lý nhanh hơn. Để giảm độ trễ, hãy đảm bảo rằng văn bản chiếm phần lớn hình ảnh nhất có thể và chụp ảnh ở độ phân giải thấp hơn (lưu ý các yêu cầu về độ chính xác đã đề cập ở trên). Để biết thêm thông tin, hãy xem bài viết Mẹo cải thiện hiệu suất.
Mẹo cải thiện hiệu suất
- Nếu bạn dùng API
Camera
hoặccamera2
, hãy điều chỉnh tốc độ gọi đến trình phát hiện. Nếu có khung hình video mới trong khi bộ phát hiện đang chạy, hãy thả khung hình đó. Hãy xem lớpVisionProcessorBase
trong ứng dụng mẫu bắt đầu nhanh để biết ví dụ. - Nếu bạn sử dụng API
CameraX
, hãy đảm bảo rằng chiến lược áp suất ngược được đặt thành giá trị mặc địnhImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Điều này đảm bảo rằng chỉ có một hình ảnh được phân phối để phân tích tại một thời điểm. Nếu có nhiều hình ảnh được tạo ra khi trình phân tích đang bận, thì những hình ảnh đó sẽ tự động bị loại bỏ và không được đưa vào hàng đợi để phân phối. Sau khi hình ảnh đang được phân tích bị đóng bằng cách gọi ImageProxy.close(), hình ảnh mới nhất tiếp theo sẽ được phân phối. - Nếu bạn dùng đầu ra của bộ nhận diện để phủ đồ hoạ lên hình ảnh đầu vào, trước tiên, hãy lấy kết quả từ ML Kit, sau đó kết xuất hình ảnh và phủ trong một bước. Thao tác này chỉ kết xuất vào bề mặt hiển thị một lần cho mỗi khung hình đầu vào. Hãy xem các lớp
CameraSourcePreview
vàGraphicOverlay
trong ứng dụng mẫu bắt đầu nhanh để biết ví dụ. - Nếu bạn sử dụng API Camera2, hãy chụp ảnh ở định dạng
ImageFormat.YUV_420_888
. Nếu bạn sử dụng Camera API cũ, hãy chụp ảnh ở định dạngImageFormat.NV21
. - Hãy cân nhắc chụp ảnh ở độ phân giải thấp hơn. Tuy nhiên, bạn cũng cần lưu ý các yêu cầu về kích thước hình ảnh của API này.