您可以使用 ML Kit 辨識圖片或影片中的文字,例如 路牌這項功能的主要特性如下:
文字辨識 v2 API | |
---|---|
說明 | 辨識圖片或影片中的文字,支援 拉丁文、中文、梵文、日文和韓文文字等 支援多種語言。 |
SDK 名稱 | GoogleMLKit/TextRecognition |
導入作業 | 在建構期間,資產會以靜態方式連結至應用程式 |
應用程式大小影響 | 每個指令碼 SDK 約 38 MB |
成效 | 多數裝置都能即時支援 Latin Script SDK,其他裝置則顯示的速度較慢。 |
立即試用
- 使用範例應用程式試試 請查看此 API 的使用範例。
- 自行嘗試透過 編寫程式碼 程式碼研究室。
事前準備
- 在 Podfile 中加入下列 ML Kit Pod:
# To recognize Latin script pod 'GoogleMLKit/TextRecognition', '3.2.0' # To recognize Chinese script pod 'GoogleMLKit/TextRecognitionChinese', '3.2.0' # To recognize Devanagari script pod 'GoogleMLKit/TextRecognitionDevanagari', '3.2.0' # To recognize Japanese script pod 'GoogleMLKit/TextRecognitionJapanese', '3.2.0' # To recognize Korean script pod 'GoogleMLKit/TextRecognitionKorean', '3.2.0'
- 安裝或更新專案的 Pod 後,請使用
.xcworkspace
。Xcode 12.4 以上版本支援 ML Kit。
1. 建立「TextRecognizer
」的執行個體
透過呼叫 TextRecognizer
建立執行個體
+textRecognizer(options:)
,傳遞與您宣告為
依附元件:
Swift
// When using Latin script recognition SDK let latinOptions = TextRecognizerOptions() let latinTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Chinese script recognition SDK let chineseOptions = ChineseTextRecognizerOptions() let chineseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Devanagari script recognition SDK let devanagariOptions = DevanagariTextRecognizerOptions() let devanagariTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Japanese script recognition SDK let japaneseOptions = JapaneseTextRecognizerOptions() let japaneseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Korean script recognition SDK let koreanOptions = KoreanTextRecognizerOptions() let koreanTextRecognizer = TextRecognizer.textRecognizer(options:options)
Objective-C
// When using Latin script recognition SDK MLKTextRecognizerOptions *latinOptions = [[MLKTextRecognizerOptions alloc] init]; MLKTextRecognizer *latinTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Chinese script recognition SDK MLKChineseTextRecognizerOptions *chineseOptions = [[MLKChineseTextRecognizerOptions alloc] init]; MLKTextRecognizer *chineseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Devanagari script recognition SDK MLKDevanagariTextRecognizerOptions *devanagariOptions = [[MLKDevanagariTextRecognizerOptions alloc] init]; MLKTextRecognizer *devanagariTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Japanese script recognition SDK MLKJapaneseTextRecognizerOptions *japaneseOptions = [[MLKJapaneseTextRecognizerOptions alloc] init]; MLKTextRecognizer *japaneseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Korean script recognition SDK MLKKoreanTextRecognizerOptions *koreanOptions = [[MLKKoreanTextRecognizerOptions alloc] init]; MLKTextRecognizer *koreanTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options];
2. 準備輸入圖片
將圖片做為UIImage
或 CMSampleBufferRef
傳遞至
TextRecognizer
的 process(_:completion:)
方法:
使用 UIImage
或VisionImage
CMSampleBuffer
。
如果您使用 UIImage
,請按照下列步驟操作:
- 使用
UIImage
建立VisionImage
物件。請務必指定正確的.orientation
。Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
如果您使用 CMSampleBuffer
,請按照下列步驟操作:
-
指定
CMSampleBuffer
。如何取得圖片方向:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- 使用
VisionImage
CMSampleBuffer
物件和方向:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. 處理圖片
接著,將圖片傳遞至 process(_:completion:)
方法:
Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // Error handling return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(MLKText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // Error handling return; } // Recognized text }];
4. 從已辨識的文字區塊擷取文字
如果文字辨識作業成功,則會傳回
Text
物件。Text
物件包含全文
已辨識在圖中,且為零或多個 TextBlock
如需儲存大量結構化物件
建議使用 Cloud Bigtable
每個 TextBlock
都代表矩形文字區塊,
包含零個或多個 TextLine
物件。每TextLine
物件包含零個或多個 TextElement
物件
這個類別是字詞和類似文字的實體,例如日期和數字。
針對每個 TextBlock
、TextLine
和
TextElement
物件,您可以在
區域的邊界座標。
例如:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (MLKTextBlock *block in result.blocks) { NSString *blockText = block.text; NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (MLKTextLine *line in block.lines) { NSString *lineText = line.text; NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (MLKTextElement *element in line.elements) { NSString *elementText = element.text; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
輸入圖片規範
-
為了讓 ML Kit 準確辨識文字,輸入圖片必須包含 以充足的像素資料表示的文字理想情況下 每個字元至少要有 16x16 像素一般來說 對字元大於 24x24 像素的特性來說,準確性的優勢在於。
舉例來說,640x480 的圖片適合掃描名片 圖片會佔滿圖片的整個寬度如何掃描列印的文件 則建議使用 720x1280 像素的圖片。
-
圖片對焦品質不佳可能會影響文字辨識的準確度。如果您不 請嘗試重新擷取圖片。
-
如果您在即時應用程式中辨識文字,應該 考量輸入圖片的整體尺寸較小 也能加快處理速度如要縮短延遲時間,請確保文字會盡量佔滿 盡可能擷取圖片,並以較低解析度拍攝圖片 (提醒您, 規定)。若需更多資訊,請參閲 提升成效的訣竅。
提升成效的訣竅
- 如要處理影片影格,請使用偵測工具的
results(in:)
同步 API。致電 透過AVCaptureVideoDataOutputSampleBufferDelegate
的captureOutput(_, didOutput:from:)
函式,以同步方式取得指定影片的結果 相框。保留AVCaptureVideoDataOutput
的alwaysDiscardsLateVideoFrames
做為true
,以限制對偵測工具的呼叫。如果是 影格的畫面,就會遭到捨棄。 - 如果使用偵測工具的輸出內容將圖像重疊 先從 ML Kit 取得結果,然後算繪圖片 並疊加單一步驟這麼一來,您的應用程式就會算繪到顯示途徑 每個處理的輸入影格只會產生一次請參閱 updatePreviewOverlayViewWithLastFrame 也可以查看一個範例
- 建議以較低的解析度拍攝圖片。請特別注意 這個 API 的圖片尺寸規定
- 為避免可能降低效能,請勿重複執行多個
TextRecognizer
執行個體具有不同指令碼選項。