Dieser umfangreiche offene Datensatz besteht aus Umrissen von Gebäuden, die aus hochauflösenden Satellitenbildern mit einer Auflösung von 50 cm abgeleitet wurden. Sie enthält 1,8 Milliarden Gebäudeerkennungen in Afrika, Lateinamerika, der Karibik, Südasien und Südostasien. Die Inferenz umfasste eine Fläche von 58 Mio. km².
Für jedes Gebäude in diesem Datensatz stellen wir das Polygon bereit, das seinen Grundriss beschreibt, einen Konfidenzwert, der angibt, wie sicher wir uns sind, dass es sich um ein Gebäude handelt, und einen Plus Code, der dem Zentrum des Gebäudes entspricht. Es sind keine Informationen zum Gebäudetyp, zur Adresse oder zu anderen Details als der Geometrie vorhanden.
Gebäudeumrisse sind für eine Reihe wichtiger Anwendungen nützlich, von Bevölkerungsschätzungen, Stadtplanung und humanitären Maßnahmen bis hin zu Umwelt- und Klimawissenschaften. Das Projekt hat seinen Sitz in Ghana und konzentriert sich zunächst auf den afrikanischen Kontinent. Es gibt jedoch auch neue Updates zu Südasien, Südostasien, Lateinamerika und der Karibik.
Die Inferenz wurde im Mai 2023 durchgeführt.
Weitere Informationen finden Sie auf der offiziellen Website des Open Buildings-Datasets.
Tabellenschema
Tabellenschema
Name
Typ
Beschreibung
area_in_meters
DOUBLE
Fläche des Polygons in Quadratmetern.
Konfidenz
DOUBLE
Konfidenzwert [0,65;1,0], der vom Modell zugewiesen wird.
full_plus_code
STRING
Der vollständige Plus Code am Schwerpunkt des Gebäude-Polygons.
W. Sirko, S. Kashubin, M. Ritter, A. Annkah, Y.S.E. Bouchareb, Y. Dauphin,
D. Keysers, M. Neumann, M. Cisse, J.A. Quinn. Gebäudeerkennung auf kontinentaler Ebene anhand hochauflösender Satellitenbilder. arXiv:2107.12283, 2021.
Ein FeatureView ist eine beschleunigte Darstellung eines FeatureCollection, die nur angezeigt werden kann. Weitere Informationen finden Sie in der Dokumentation zu FeatureView.
Dieser umfangreiche offene Datensatz besteht aus Umrissen von Gebäuden, die aus hochauflösenden Satellitenbildern mit einer Auflösung von 50 cm abgeleitet wurden. Sie enthält 1,8 Milliarden Gebäudeerkennungen in Afrika, Lateinamerika, der Karibik, Südasien und Südostasien. Die Inferenz umfasste eine Fläche von 58 Mio. km². Für jedes Gebäude in diesem Dataset ist das Polygon enthalten, das …
[null,null,[],[[["\u003cp\u003eThe Open Buildings dataset provides outlines of 1.8B buildings derived from 50 cm satellite imagery across Africa, Latin America, Caribbean, South Asia, and Southeast Asia.\u003c/p\u003e\n"],["\u003cp\u003eIt includes building footprints, a confidence score, and a Plus Code for each building, covering an area of 58M km².\u003c/p\u003e\n"],["\u003cp\u003eBuilding footprints can be used for various applications, including population estimation, urban planning, and environmental science.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset is available under the CC-BY-4.0 license and is accessible through Google Earth Engine.\u003c/p\u003e\n"],["\u003cp\u003eThe dataset includes building confidence scores, allowing users to filter buildings based on the model's certainty.\u003c/p\u003e\n"]]],[],null,["# Open Buildings V3 Polygons\n\nDataset Availability\n: 2023-05-30T00:00:00Z--2023-05-30T00:00:00Z\n\nDataset Provider\n:\n\n\n [Google Research - Open Buildings](https://sites.research.google/open-buildings/)\n\nTags\n:\n [africa](/earth-engine/datasets/tags/africa) [asia](/earth-engine/datasets/tags/asia) [building](/earth-engine/datasets/tags/building) [built-up](/earth-engine/datasets/tags/built-up) [open-buildings](/earth-engine/datasets/tags/open-buildings) [population](/earth-engine/datasets/tags/population) [south-asia](/earth-engine/datasets/tags/south-asia) [southeast-asia](/earth-engine/datasets/tags/southeast-asia) [table](/earth-engine/datasets/tags/table) \nstructure \n\n#### Description\n\nThis large-scale open dataset consists of outlines of buildings derived\nfrom high-resolution 50 cm satellite imagery. It contains 1.8B building\ndetections in Africa, Latin America, Caribbean, South Asia and Southeast\nAsia. The inference spanned an area of 58M km².\n\nFor each building in this dataset we include the polygon describing its\nfootprint on the ground, a confidence score indicating how sure we are that\nthis is a building, and a [Plus Code](https://plus.codes/) corresponding to\nthe center of the building. There is no information about the type of\nbuilding, its street address, or any details other than its geometry.\n\nBuilding footprints are useful for a range of important applications: from\npopulation estimation, urban planning and humanitarian response to\nenvironmental and climate science. The project is based in Ghana, with an\ninitial focus on the continent of Africa and new updates on South Asia,\nSouth-East Asia, Latin America and the Caribbean.\n\nInference was carried out during May 2023.\n\nFor more details see the official\n[website](https://sites.research.google/open-buildings/) of the Open\nBuildings dataset.\n\n### Table Schema\n\n**Table Schema**\n\n| Name | Type | Description |\n|--------------------|----------|-----------------------------------------------------------------------------|\n| area_in_meters | DOUBLE | Area in square meters of the polygon. |\n| confidence | DOUBLE | Confidence score \\[0.65;1.0\\] assigned by the model. |\n| full_plus_code | STRING | The full [Plus Code](https://plus.codes/) at the building polygon centroid. |\n| longitude_latitude | GEOMETRY | Centroid of the polygon. |\n\n### Terms of Use\n\n**Terms of Use**\n\n[CC-BY-4.0](https://spdx.org/licenses/CC-BY-4.0.html)\n\n### Citations\n\nCitations:\n\n- W. Sirko, S. Kashubin, M. Ritter, A. Annkah, Y.S.E. Bouchareb, Y. Dauphin,\n D. Keysers, M. Neumann, M. Cisse, J.A. Quinn. Continental-scale building\n detection from high resolution satellite imagery.\n [arXiv:2107.12283](https://arxiv.org/abs/2107.12283), 2021.\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\n// Visualization of GOOGLE/Research/open-buildings/v3/polygons.\n\nvar t = ee.FeatureCollection('GOOGLE/Research/open-buildings/v3/polygons');\n\nvar t_065_070 = t.filter('confidence \u003e= 0.65 && confidence \u003c 0.7');\nvar t_070_075 = t.filter('confidence \u003e= 0.7 && confidence \u003c 0.75');\nvar t_gte_075 = t.filter('confidence \u003e= 0.75');\n\nMap.addLayer(t_065_070, {color: 'FF0000'}, 'Buildings confidence [0.65; 0.7)');\nMap.addLayer(t_070_075, {color: 'FFFF00'}, 'Buildings confidence [0.7; 0.75)');\nMap.addLayer(t_gte_075, {color: '00FF00'}, 'Buildings confidence \u003e= 0.75');\nMap.setCenter(3.389, 6.492, 17); // Lagos, Nigeria\nMap.setOptions('SATELLITE');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/GOOGLE/GOOGLE_Research_open-buildings_v3_polygons)\n\n### Visualize as a FeatureView\n\n\nA `FeatureView` is a view-only, accelerated representation of a\n`FeatureCollection`. For more details, visit the\n[`FeatureView` documentation.](/earth-engine/guides/featureview_overview)\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar fvLayer = ui.Map.FeatureViewLayer(\n 'GOOGLE/Research/open-buildings/v3/polygons_FeatureView');\n\nvar visParams = {\n rules: [\n {\n filter: ee.Filter.expression('confidence \u003e= 0.65 && confidence \u003c 0.7'),\n color: 'FF0000'\n },\n {\n filter: ee.Filter.expression('confidence \u003e= 0.7 && confidence \u003c 0.75'),\n color: 'FFFF00'\n },\n {\n filter: ee.Filter.expression('confidence \u003e= 0.75'),\n color: '00FF00'\n },\n ]\n};\n\nfvLayer.setVisParams(visParams);\nfvLayer.setName('Buildings');\n\nMap.setCenter(3.389, 6.492, 17); // Lagos, Nigeria\nMap.add(fvLayer);\nMap.setOptions('SATELLITE');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/GOOGLE/GOOGLE_Research_open-buildings_v3_polygons_FeatureView) \n[Open Buildings V3 Polygons](/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons) \nThis large-scale open dataset consists of outlines of buildings derived from high-resolution 50 cm satellite imagery. It contains 1.8B building detections in Africa, Latin America, Caribbean, South Asia and Southeast Asia. The inference spanned an area of 58M km². For each building in this dataset we include the polygon describing ... \nGOOGLE/Research/open-buildings/v3/polygons, africa,asia,building,built-up,open-buildings,population,south-asia,southeast-asia,table \n2023-05-30T00:00:00Z/2023-05-30T00:00:00Z \n-90 -180 90 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://sites.research.google/open-buildings/)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons)"]]