在 Android 上使用机器学习套件检测人脸

您可以使用机器学习套件检测图片和视频中的人脸。

集成人脸检测的方法有两种:捆绑模型(属于您的应用的一部分)和不捆绑模型(依赖于 Google Play 服务)。这两种模型是相同的。如果您选择未捆绑模型,您的应用会变小。

特征未捆绑组合
实现模型是通过 Google Play 服务动态下载的。模型在构建时静态关联到您的应用。
应用大小大小增加约 800 KB。大小增加约 6.9 MB。
初始化时间可能需要等到模型下载完毕后再使用。模型可立即使用
  • 请试用示例应用,以查看此 API 的用法示例。
  • 使用 Codelab 亲自试用代码。

准备工作

  1. 请务必在您的项目级 build.gradle 文件中的 buildscriptallprojects 部分添加 Google 的 Maven 代码库。

  2. 将 Android 版机器学习套件库的依赖项添加到您的模块的应用级 Gradle 文件(通常为 app/build.gradle)。根据需要选择以下依赖项之一:

    如需将模型与应用捆绑,请执行以下操作

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.5'
    }
    

    如需在 Google Play 服务中使用该模型,请按以下步骤操作

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. 如果您选择在 Google Play 服务中使用模型,则可以对应用进行配置,使其在从 Play 商店安装后自动将模型下载到设备上。为此,请将以下声明添加到应用的 AndroidManifest.xml 文件:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    您还可以通过 Google Play 服务 ModuleInstallClient API 明确检查模型的可用性并请求下载。

    如果您未启用安装时模型下载或请求显式下载,系统会在您首次运行检测器时下载模型。您在下载完毕之前提出的请求不会产生任何结果。

输入图片指南

对于人脸识别,您应该使用尺寸至少为 480x360 像素的图片。 为了使机器学习套件准确检测人脸,输入图片必须包含由足够像素数据表示的人脸。一般来说,要在图片中检测的每张人脸应至少为 100x100 像素。如果要检测人脸轮廓,机器学习套件需要更高的分辨率输入:每张人脸应至少为 200x200 像素。

如果您在实时应用中检测人脸,则可能还需要考虑输入图片的整体尺寸。较小图片的处理速度相对较快,因此,为了缩短延迟时间,请以较低的分辨率捕获图片,但请牢记上述准确性要求,并确保拍摄对象在图片中占据尽可能多的图片位置。另请参阅提高实时性能的相关提示

图片聚焦不良也会影响准确性。如果您未获得可接受的结果,请让用户重新拍摄图片。

人脸相对于相机的方向也会影响机器学习套件检测到的面部特征。请参阅人脸检测概念

1. 配置人脸检测器

在对图片应用人脸检测之前,如果要更改人脸检测器的任何默认设置,请使用 FaceDetectorOptions 对象指定这些设置。您可以更改以下设置:

设置
setPerformanceMode PERFORMANCE_MODE_FAST(默认)| PERFORMANCE_MODE_ACCURATE

在检测人脸时更注重速度还是准确性。

setLandmarkMode LANDMARK_MODE_NONE(默认)| LANDMARK_MODE_ALL

是否尝试识别面部“特征点”:眼睛、耳朵、鼻子、脸颊、嘴巴等。

setContourMode CONTOUR_MODE_NONE(默认)| CONTOUR_MODE_ALL

是否检测面部特征的轮廓。仅检测图片中最突出的人脸的轮廓。

setClassificationMode CLASSIFICATION_MODE_NONE(默认)| CLASSIFICATION_MODE_ALL

是否将人脸分为不同类别(例如“微笑”和“睁眼”)。

setMinFaceSize float(默认值:0.1f

设置所需的最小人脸大小,表示为头部宽度与图片宽度之比。

enableTracking false(默认)| true

是否为人脸分配 ID,以用于跨图片跟踪人脸。

请注意,启用轮廓检测后,仅检测到一张人脸,因此人脸跟踪不会产生有用的结果。因此,若要提高检测速度,请勿同时启用轮廓检测和人脸跟踪。

例如:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. 准备输入图片

如需检测图片中的人脸,请基于设备上的以下资源创建一个 InputImage 对象:Bitmapmedia.ImageByteBuffer、字节数组或文件。然后,将 InputImage 对象传递给 FaceDetectorprocess 方法。

对于人脸检测,您应该使用尺寸至少为 480x360 像素的图片。如果要实时检测人脸,以这种最低分辨率捕获帧有助于缩短延迟时间。

您可以根据不同的来源创建 InputImage 对象,下文分别介绍了各种对象。

使用 media.Image

如需基于 media.Image 对象创建 InputImage 对象(例如从设备的相机捕获图片时),请将 media.Image 对象和图片的旋转角度传递给 InputImage.fromMediaImage()

如果您使用 CameraX 库,OnImageCapturedListenerImageAnalysis.Analyzer 类会为您计算旋转角度值。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您不使用可提供图片旋转角度的相机库,则可以根据设备的旋转角度和设备中相机传感器的朝向来计算旋转角度:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

然后,将 media.Image 对象及其旋转角度值传递给 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用文件 URI

如需基于文件 URI 创建 InputImage 对象,请将应用上下文和文件 URI 传递给 InputImage.fromFilePath()。当您使用 ACTION_GET_CONTENT intent 提示用户从图库应用中选择图片时,这种做法非常有用。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如需基于 ByteBufferByteArray 创建 InputImage 对象,请先按之前针对 media.Image 输入的说明计算图片旋转角度。然后,使用缓冲区或数组以及图片的高度、宽度、颜色编码格式和旋转角度创建 InputImage 对象:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如需基于 Bitmap 对象创建 InputImage 对象,请进行以下声明:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

图片由 Bitmap 对象和旋转角度表示。

3. 获取 FaceDetector 的实例

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. 处理图片

将图片传递给 process 方法:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. 获取有关检测到的人脸的信息

如果人脸检测操作成功,系统会向成功监听器传递一组 Face 对象。每个 Face 对象代表一张在图片中检测到的面孔。对于每张人脸,您可以获取它在输入图片中的边界坐标,以及您已配置人脸检测器所查找的任何其他信息。例如:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

人脸轮廓的示例

启用人脸轮廓检测后,对于检测到的每个面部特征,您会获得一系列点。这些点表示特征的形状。如需详细了解轮廓的表示方式,请参阅人脸检测概念

下图展示了这些点与人脸的对应情况,点击图片可放大:

检测到的人脸轮廓线的示例

实时人脸检测

如果要在实时应用中使用人脸检测,请遵循以下准则以实现最佳帧速率:

  • 将人脸检测器配置为使用人脸轮廓检测或分类和特征点检测,但不能同时使用这两者:

    轮廓检测
    地标检测
    分类
    地标检测和分类
    轮廓检测和地标
    轮廓检测和分类
    轮廓检测、地标检测和分类

  • 启用 FAST 模式(默认处于启用状态)。

  • 建议以较低分辨率捕获图片。但是,您也要牢记此 API 的图片尺寸要求。

  • 如果您使用 Cameracamera2 API,可以限制对检测器的调用。如果在检测器运行时有新的视频帧可用,请丢弃该帧。如需查看示例,请参阅快速入门示例应用中的 VisionProcessorBase 类。
  • 如果使用 CameraX API,请确保将 Backpressure 策略设置为默认值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。 这可确保一次只会投放一张图片进行分析。如果分析器忙于生成更多图像,则这些图像会自动丢弃而不会排队等待传送。通过调用 ImageProxy.close() 关闭正在分析的图片,系统会交付下一个最新图片。
  • 如果您使用检测器的输出在输入图片上叠加图形,请先从机器学习套件获取结果,然后在一个步骤中完成图片的渲染和叠加。每个输入帧只需在显示表面呈现一次。如需查看示例,请参阅快速入门示例应用中的 CameraSourcePreviewGraphicOverlay 类。
  • 如果您使用 Camera2 API,请以 ImageFormat.YUV_420_888 格式捕获图片。如果您使用旧版 Camera API,请以 ImageFormat.NV21 格式捕获图片。