Bilder mit ML Kit unter Android mit Labels versehen

Mit ML Kit können Sie Objekte, die in einem Bild erkannt wurden, mit Labels versehen. Das mit ML Kit bereitgestellte Standardmodell unterstützt mehr als 400 verschiedene Labels.

FunktionNicht gruppiertGebündelt
ImplementierungDas Modell wird über die Google Play-Dienste dynamisch heruntergeladen.Das Modell ist zum Zeitpunkt der Erstellung statisch mit Ihrem verknüpft.
App-GrößeGröße um ca. 200 KB erhöht.Die Größe wird um ca.5,7 MB erhöht.
InitialisierungszeitVor der ersten Verwendung muss möglicherweise auf den Download des Modells gewartet werden.Modell ist sofort verfügbar

Ausprobieren

  • Probieren Sie die Beispiel-App aus, um ein Beispiel für die Verwendung dieser API zu sehen.

Hinweis

  1. Achten Sie in der Datei build.gradle auf Projektebene darauf, dass Sie das Maven-Repository von Google in den Abschnitten buildscript und allprojects einfügen.

  2. Fügen Sie die Abhängigkeiten für die ML Kit-Android-Bibliotheken der Gradle-Datei auf App-Ebene Ihres Moduls hinzu. Diese ist in der Regel app/build.gradle. Wählen Sie je nach Ihren Anforderungen eine der folgenden Abhängigkeiten aus:

    So bündeln Sie das Modell mit Ihrer App:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.7'
    }
    

    Zur Verwendung des Modells in den Google Play-Diensten:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. Wenn Sie das Modell in den Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell nach der Installation Ihrer App aus dem Play Store automatisch auf das Gerät heruntergeladen wird. Fügen Sie dazu der Datei AndroidManifest.xml Ihrer App die folgende Deklaration hinzu:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    Sie können die Modellverfügbarkeit auch explizit über die ModuleInstallClient API der Google Play-Dienste prüfen und den Download anfordern.

    Wenn Sie Modelldownloads nicht aktivieren oder einen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Labelerstellers heruntergeladen. Anfragen, die Sie vor dem Abschluss des Downloads stellen, generieren keine Ergebnisse.

Jetzt können Sie den Bildern Labels hinzufügen.

1. Eingabebild vorbereiten

Erstellen Sie ein InputImage-Objekt aus Ihrem Bild. Der Bild-Labelersteller wird am schnellsten ausgeführt, wenn Sie Bitmap oder bei Verwendung der Camera2 API eine YUV_420_888-media.Image verwenden. Dies wird nach Möglichkeit empfohlen.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Diese werden im Folgenden beschrieben.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Bilddrehung an InputImage.fromMediaImage().

Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn du keine Kamerabibliothek verwendest, die den Drehgrad des Bildes angibt, kannst du ihn anhand des Gerätedrehungsgrads und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das Objekt media.Image und den Wert für den Rotationsgrad an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath(), um ein InputImage-Objekt aus einem Datei-URI zu erstellen. Das ist nützlich, wenn du den Nutzer mit einem ACTION_GET_CONTENT-Intent zur Auswahl eines Bildes aus der Galerie-App aufforderst.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Mit ByteBuffer oder ByteArray

Berechnen Sie zuerst den Bilddrehungsgrad wie zuvor für die media.Image-Eingabe beschrieben, um ein InputImage-Objekt aus einem ByteBuffer- oder ByteArray-Objekt zu erstellen. Erstellen Sie dann das InputImage-Objekt mit dem Puffer oder Array und geben dabei Höhe, Breite, Farbcodierungsformat und Rotationsgrad des Bildes an:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

Mit der folgenden Deklaration kannst du ein InputImage-Objekt aus einem Bitmap-Objekt erstellen:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit Rotationsgraden dargestellt.

2. Labelersteller für Bilder konfigurieren und ausführen

Um Objekte in einem Bild mit einem Label zu versehen, übergeben Sie das Objekt InputImage an die Methode process der ImageLabeler.

  1. Rufen Sie zuerst eine Instanz von ImageLabeler ab.

    Wenn Sie den Bildlabeler auf dem Gerät verwenden möchten, geben Sie die folgende Deklaration ein:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. Übergeben Sie das Bild dann an die Methode process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. Informationen zu Objekten mit Labels abrufen

Wenn der Vorgang zum Beschriften von Bildern erfolgreich ist, wird eine Liste von ImageLabel-Objekten an den Erfolgs-Listener übergeben. Jedes ImageLabel-Objekt steht für etwas, das im Bild mit einem Label versehen wurde. Das Basismodell unterstützt mehr als 400 verschiedene Labels. Sie können die Textbeschreibung jedes Labels, einen Index unter allen vom Modell unterstützten Labels und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Tipps zur Verbesserung der Echtzeitleistung

Wenn du Bilder in einer Echtzeitanwendung mit Labels versehen möchtest, beachte die folgenden Richtlinien, um die besten Framerates zu erzielen:

  • Wenn Sie die API Camera oder camera2 verwenden, drosseln Sie Aufrufe an den Labelersteller für Bilder. Falls ein neuer Videoframe verfügbar wird, während der Bildlabelersteller ausgeführt wird, löschen Sie ihn. Ein Beispiel hierfür finden Sie in der Beispiel-App der Kurzanleitung in der Klasse VisionProcessorBase.
  • Wenn Sie die CameraX API verwenden, muss die Abwärtsdruckstrategie auf den Standardwert ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST festgelegt sein. Dadurch wird garantiert, dass jeweils nur ein Bild zur Analyse gesendet wird. Wenn weitere Bilder erstellt werden, wenn das Analysetool ausgelastet ist, werden diese automatisch gelöscht und nicht in die Warteschlange gestellt. Sobald das zu analysierende Bild durch Aufrufen von ImageProxy.close() geschlossen wurde, wird das jeweils neueste Image bereitgestellt.
  • Wenn Sie die Ausgabe des Bildlabelerstellers verwenden, um Grafiken über das Eingabebild einzublenden, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. Dies wird für jeden Eingabeframe nur einmal auf der Anzeigeoberfläche gerendert. Ein Beispiel finden Sie in der Beispiel-App aus der Kurzanleitung in den Klassen CameraSourcePreview und GraphicOverlay.
  • Wenn du die Camera2 API verwendest, nimm Bilder im ImageFormat.YUV_420_888-Format auf. Wenn du die ältere Camera API verwendest, nimm Bilder im ImageFormat.NV21-Format auf.