Маркируйте изображения с помощью обученной модели AutoML на Android

После того, как вы обучите свою собственную модель с помощью AutoML Vision Edge , вы можете использовать ее в своем приложении для маркировки изображений. Существует два способа интеграции моделей, обученных с помощью AutoML Vision Edge: вы можете объединить модель, поместив ее в папку ресурсов вашего приложения, или вы можете динамически загрузить ее из Firebase.
Варианты комплектации моделей
Встроено в ваше приложение
  • Модель является частью APK вашего приложения.
  • Модель доступна немедленно, даже если Android-устройство находится в автономном режиме.
  • Нет необходимости в проекте Firebase
Хостинг с Firebase
  • Разместите модель, загрузив ее в Firebase Machine Learning.
  • Уменьшает размер APK
  • Модель скачивается по запросу.
  • Отправка обновлений модели без повторной публикации приложения
  • Простое A/B-тестирование с помощью Firebase Remote Config
  • Требуется проект Firebase

Попробуйте это

Прежде чем начать

1. В файле build.gradle уровня проекта обязательно включите репозиторий Maven от Google в разделы buildscript и allprojects .

2. Добавьте зависимости для библиотек ML Kit Android в файл gradle уровня приложения вашего модуля, который обычно называется app/build.gradle : Для объединения модели с вашим приложением:
    dependencies {
      // ...
      // Image labeling feature with bundled automl model
      implementation 'com.google.mlkit:image-labeling-automl:16.2.1'
    }
    
Для динамической загрузки модели из Firebase добавьте зависимость linkFirebase :
    dependencies {
      // ...
      // Image labeling feature with automl model downloaded
      // from firebase
      implementation 'com.google.mlkit:image-labeling-automl:16.2.1'
      implementation 'com.google.mlkit:linkfirebase:16.0.1'
    }
    
3. Если вы хотите загрузить модель , убедитесь, что вы добавили Firebase в свой проект Android , если вы еще этого не сделали. Это не требуется, когда вы связываете модель.

1. Загрузите модель

Настройте локальный источник модели

Чтобы связать модель с вашим приложением:

1. Извлеките модель и ее метаданные из zip-архива, который вы скачали из консоли Firebase. Мы рекомендуем вам использовать файлы в том виде, в котором вы их скачали, без изменений (включая имена файлов).

2. Включите вашу модель и ее файлы метаданных в пакет вашего приложения:

а. Если в вашем проекте нет папки assets, создайте ее, щелкнув правой кнопкой мыши папку app/ , а затем выбрав New > Folder > Assets Folder .

б) Создайте подпапку в папке assets для хранения файлов модели.

в. Скопируйте файлы model.tflite , dict.txt и manifest.json в подпапку (все три файла должны находиться в одной папке).

3. Добавьте следующее в файл build.gradle вашего приложения, чтобы Gradle не сжимал файл модели при сборке приложения:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
Файл модели будет включен в пакет приложения и доступен для ML Kit в качестве необработанного ресурса.

Примечание: начиная с версии 4.1 плагина Android Gradle, .tflite будет добавлен в список noCompress по умолчанию, и указанное выше больше не понадобится.

4. Создайте объект LocalModel , указав путь к файлу манифеста модели:

Котлин

val localModel = AutoMLImageLabelerLocalModel.Builder()
        .setAssetFilePath("manifest.json")
        // or .setAbsoluteFilePath(absolute file path to manifest file)
        .build()

Ява

AutoMLImageLabelerLocalModel localModel =
    new AutoMLImageLabelerLocalModel.Builder()
        .setAssetFilePath("manifest.json")
        // or .setAbsoluteFilePath(absolute file path to manifest file)
        .build();

Настройте источник модели, размещенный в Firebase

Чтобы использовать удаленно размещенную модель, создайте объект RemoteModel , указав имя, которое вы присвоили модели при ее публикации:

Котлин

// Specify the name you assigned in the Firebase console.
val remoteModel =
    AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()

Ява

// Specify the name you assigned in the Firebase console.
AutoMLImageLabelerRemoteModel remoteModel =
    new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();

Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модели нет на устройстве или доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:

Котлин

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Ява

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

Многие приложения запускают задачу загрузки в своем коде инициализации, но вы можете сделать это в любой момент, прежде чем вам понадобится использовать модель.

Создайте маркировщик изображений на основе вашей модели

После настройки источников модели создайте объект ImageLabeler из одного из них.

Если у вас есть только локально связанная модель, просто создайте маркировщик из объекта AutoMLImageLabelerLocalModel и настройте требуемый пороговый показатель уверенности (см. раздел Оценка модели ):

Котлин

val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)

Ява

AutoMLImageLabelerOptions autoMLImageLabelerOptions =
        new AutoMLImageLabelerOptions.Builder(localModel)
                .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                               // to determine an appropriate value.
                .build();
ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)

Если у вас есть удаленно размещенная модель, вам придется проверить, что она была загружена, прежде чем вы ее запустите. Вы можете проверить статус задачи загрузки модели с помощью метода isModelDownloaded() менеджера моделей.

Хотя вам нужно подтвердить это только перед запуском маркировщика, если у вас есть как удаленно размещенная модель, так и локально связанная модель, может иметь смысл выполнить эту проверку при создании экземпляра маркировщика изображений: создать маркировщик из удаленной модели, если она была загружена, и из локальной модели в противном случае.

Котлин

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            AutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            AutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = ImageLabeling.getClient(options)
}

Ява

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                AutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel);
                }
                AutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

Если у вас есть только удаленно размещенная модель, вам следует отключить функциональность, связанную с моделью, например, сделать ее серой или скрыть часть вашего пользовательского интерфейса, пока вы не подтвердите, что модель загружена. Вы можете сделать это, прикрепив слушателя к методу download() менеджера моделей:

Котлин

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

Ява

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

2. Подготовьте входное изображение.

Затем для каждого изображения, которое вы хотите пометить, создайте объект InputImage из вашего изображения. Ярлык изображения работает быстрее всего, когда вы используете Bitmap или, если вы используете API camera2, YUV_420_888 media.Image , которые рекомендуются, когда это возможно.

Вы можете создать объект InputImage из разных источников, каждый из которых описан ниже.

Использование media.Image

Чтобы создать объект InputImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в InputImage.fromMediaImage() .

Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота автоматически.

Котлин

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Ява

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Если вы не используете библиотеку камеры, которая выдает угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры на устройстве:

Котлин

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Ява

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Затем передайте объект media.Image и значение угла поворота в InputImage.fromMediaImage() :

Котлин

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Использование URI файла

Чтобы создать объект InputImage из URI файла, передайте контекст приложения и URI файла в InputImage.fromFilePath() . Это полезно, когда вы используете намерение ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из своего приложения галереи.

Котлин

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Использование ByteBuffer или ByteArray

Чтобы создать объект InputImage из ByteBuffer или ByteArray , сначала вычислите степень поворота изображения, как описано ранее для ввода media.Image . Затем создайте объект InputImage с буфером или массивом, вместе с высотой изображения, шириной, форматом кодировки цвета и степенью поворота:

Котлин

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Ява

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Использование Bitmap

Чтобы создать объект InputImage из объекта Bitmap , сделайте следующее объявление:

Котлин

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Изображение представлено объектом Bitmap вместе с градусами поворота.

3. Запустите маркировщик изображений

Чтобы маркировать объекты на изображении, передайте объект image методу process() ImageLabeler .

Котлин

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Ява

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Получить информацию о маркированных объектах

Если операция маркировки изображения прошла успешно, список объектов ImageLabel передается прослушивателю успеха. Каждый объект ImageLabel представляет собой что-то, что было помечено на изображении. Вы можете получить текстовое описание каждой метки, оценку достоверности совпадения и индекс совпадения. Например:

Котлин

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Ява

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Советы по улучшению производительности в реальном времени

Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям, чтобы добиться наилучшей частоты кадров:

  • Если вы используете API Camera или camera2 , ограничивайте вызовы маркировщика изображений. Если новый видеокадр становится доступным во время работы маркировщика изображений, удалите кадр. См. класс VisionProcessorBase в примере приложения быстрого запуска для примера.
  • Если вы используете API CameraX , убедитесь, что стратегия обратного давления установлена ​​на значение по умолчанию ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST . Это гарантирует, что для анализа будет доставлено только одно изображение за раз. Если при занятости анализатора будет создано больше изображений, они будут автоматически удалены и не будут поставлены в очередь на доставку. После того, как анализируемое изображение будет закрыто вызовом ImageProxy.close(), будет доставлено следующее последнее изображение.
  • Если вы используете вывод маркировщика изображений для наложения графики на входное изображение, сначала получите результат из ML Kit, затем визуализируйте изображение и наложение за один шаг. Это визуализирует поверхность отображения только один раз для каждого входного кадра. См. классы CameraSourcePreview и GraphicOverlay в примере приложения быстрого запуска для примера.
  • Если вы используете API Camera2, захватывайте изображения в формате ImageFormat.YUV_420_888 . Если вы используете старый API Camera, захватывайте изображения в формате ImageFormat.NV21 .