Segmentazione dei selfie con ML Kit su Android

ML Kit fornisce un SDK ottimizzato per la segmentazione dei selfie.

Gli asset di Selfie Segmenter sono collegati in modo statico alla tua app in fase di compilazione. In questo modo, le dimensioni di download dell'app aumenteranno di circa 4,5 MB e la latenza dell'API può variare da 25 ms a 65 ms a seconda delle dimensioni dell'immagine di input, misurate su un Pixel 4.

Prova

  • Prova l'app di esempio per vedere un esempio di utilizzo di questa API.

Prima di iniziare

  1. Nel file build.gradle a livello di progetto, assicurati di includere il repository Maven di Google sia nelle sezioni buildscript che allprojects.
  2. Aggiungi le dipendenze per le librerie Android di ML Kit al file Gradle a livello di app del tuo modulo, che in genere è app/build.gradle:
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

1. Crea un'istanza di Segmenter

Opzioni del segmentatore

Per eseguire la segmentazione di un'immagine, crea prima un'istanza di Segmenter specificando le seguenti opzioni.

Modalità rilevatore

Segmenter opera in due modalità. Assicurati di scegliere quello più adatto al tuo caso d'uso.

STREAM_MODE (default)

Questa modalità è progettata per lo streaming di fotogrammi da video o fotocamera. In questa modalità, lo segmentatore sfrutta i risultati dei frame precedenti per restituire risultati di segmentazione più fluidi.

SINGLE_IMAGE_MODE

Questa modalità è progettata per singole immagini non correlate. In questa modalità, lo segmentatore elabora ogni immagine in modo indipendente, senza applicare l'appiattimento ai frame.

Attiva maschera dimensioni non elaborate

Chiede al segmentatore di restituire la maschera delle dimensioni non elaborate che corrisponde alle dimensioni di output del modello.

Le dimensioni della maschera non elaborata (ad es. 256 x 256) sono in genere inferiori alle dimensioni dell'immagine di input. Chiama SegmentationMask#getWidth() e SegmentationMask#getHeight() per ottenere le dimensioni della maschera quando attivi questa opzione.

Se non specifichi questa opzione, lo strumento di segmentazione ridimensionerà la maschera non elaborata in base alle dimensioni dell'immagine di input. Valuta la possibilità di utilizzare questa opzione se vuoi applicare una logica di ricoscalatura personalizzata o se la ricoscalatura non è necessaria per il tuo caso d'uso.

Specifica le opzioni del segmentatore:

KotlinJava
val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()
SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

Crea un'istanza di Segmenter. Passa le opzioni specificate:

KotlinJava
val segmenter = Segmentation.getClient(options)
Segmenter segmenter = Segmentation.getClient(options);

2. Prepara l'immagine di input

Per eseguire la segmentazione di un'immagine, crea un oggetto InputImage da un array di byte Bitmap, media.Image, ByteBuffer o da un file sul dispositivo.

Puoi creare un oggetto InputImage da diverse origini, ognuna delle quali è descritta di seguito.

Utilizzo di un media.Image

Per creare un oggetto InputImage da un oggetto media.Image, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggetto media.Image e la rotazione dell'immagine a InputImage.fromMediaImage().

Se utilizzi la libreria CameraX, le classi OnImageCapturedListener e ImageAnalysis.Analyzer calcolano il valore di rotazione per te.

KotlinJava
private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}
private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se non utilizzi una libreria della fotocamera che ti fornisca il grado di rotazione dell'immagine, puoi calcolarlo dal grado di rotazione del dispositivo e dall'orientamento del sensore della fotocamera al suo interno:

KotlinJava
private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}
private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Poi, passa l'oggetto media.Image e il valore del grado di rotazione a InputImage.fromMediaImage():

KotlinJava
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utilizzo di un URI file

Per creare un oggetto InputImage da un URI file, passa il contesto dell'app e l'URI file a InputImage.fromFilePath(). Questa operazione è utile quando utilizzi un'intenzione ACTION_GET_CONTENT per chiedere all'utente di selezionare un'immagine dalla sua app Galleria.

KotlinJava
val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}
InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utilizzo di un ByteBuffer o ByteArray

Per creare un oggetto InputImage da un ByteBuffer o un ByteArray, calcola prima il grado di rotazione dell'immagine come descritto in precedenza per l'input media.Image. Quindi, crea l'oggetto InputImage con il buffer o l'array, insieme all'altezza, alla larghezza, al formato di codifica del colore e al grado di rotazione dell'immagine:

KotlinJava
val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utilizzo di un Bitmap

Per creare un oggetto InputImage da un oggetto Bitmap, esegui la seguente dichiarazione:

KotlinJava
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'immagine è rappresentata da un oggetto Bitmap insieme ai gradi di rotazione.

3. Elabora l'immagine

Passa l'oggetto InputImage preparato al metodo process di Segmenter.

KotlinJava
Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }
Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Ottieni il risultato della segmentazione

Puoi ottenere il risultato della segmentazione come segue:

KotlinJava
val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}
ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

Per un esempio completo di come utilizzare i risultati della segmentazione, consulta l'esempio di avvio rapido di ML Kit.

Suggerimenti per migliorare il rendimento

La qualità dei risultati dipende dalla qualità dell'immagine di input:

  • Affinché ML Kit ottenga un risultato di segmentazione accurato, l'immagine deve avere almeno 256 x 256 pixel.
  • Anche la scarsa messa a fuoco delle immagini può influire sull'accuratezza. Se non ottieni risultati accettabili, chiedi all'utente di acquisire di nuovo l'immagine.

Se vuoi utilizzare la segmentazione in un'applicazione in tempo reale, segui queste linee guida per ottenere le frequenze frame migliori:

  • Utilizza STREAM_MODE.
  • Valuta la possibilità di acquisire le immagini a una risoluzione inferiore. Tuttavia, tieni presente anche i requisiti relativi alle dimensioni delle immagini di questa API.
  • Valuta la possibilità di attivare l'opzione della maschera delle dimensioni non elaborate e di combinare tutta la logica di ridimensionamento. Ad esempio, anziché lasciare che l'API ridimensioni la maschera in base alle dimensioni dell'immagine di input e poi ridimensionarla di nuovo in base alle dimensioni della visualizzazione per la visualizzazione, richiedi semplicemente la maschera delle dimensioni non elaborate e combina questi due passaggi in uno.
  • Se utilizzi l'API Camera o camera2, limita le chiamate al rilevatore. Se un nuovo frame del video diventa disponibile mentre il rilevatore è in esecuzione, inseriscilo. Per un esempio, consulta la classe VisionProcessorBase nell'app di esempio della guida rapida.
  • Se utilizzi l'API CameraX, assicurati che la strategia di backpressure sia impostata sul valore predefinito ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. In questo modo, viene garantito che venga inviata una sola immagine per l'analisi alla volta. Se vengono prodotte altre immagini quando l'analizzatore è occupato, queste verranno eliminate automaticamente e non verranno messe in coda per l'invio. Una volta chiusa l'immagine analizzata chiamando ImageProxy.close(), verrà inviata l'immagine più recente successiva.
  • Se utilizzi l'output del rilevatore per sovrapporre la grafica all'immagine di input, ottieni prima il risultato da ML Kit, poi esegui il rendering dell'immagine e la sovrapposizione in un unico passaggio. Viene visualizzato sulla superficie di visualizzazione solo una volta per ogni frame di input. Per un esempio, consulta le classi CameraSourcePreview e GraphicOverlay nell'app di esempio della guida di avvio rapido.
  • Se utilizzi l'API Camera2, acquisisci le immagini in formato ImageFormat.YUV_420_888. Se utilizzi la precedente API Camera, acquisisci le immagini in formato ImageFormat.NV21.