分配了任务大小

本部分介绍了一个分配问题,其中每个任务都有一个大小,表示任务需要的时间或工作量。 每个工作器执行的任务的总大小具有固定的边界。

我们将介绍使用 CP-SAT 求解器解决此问题的 Python 程序 和 MIP 求解器。

CP-SAT 解决方案

首先,我们来看一下解决该问题的 CP-SAT 解决方案。

导入库

以下代码会导入所需的库。

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

定义数据

以下代码会为程序创建数据。

Python

costs = [
    [90, 76, 75, 70, 50, 74, 12, 68],
    [35, 85, 55, 65, 48, 101, 70, 83],
    [125, 95, 90, 105, 59, 120, 36, 73],
    [45, 110, 95, 115, 104, 83, 37, 71],
    [60, 105, 80, 75, 59, 62, 93, 88],
    [45, 65, 110, 95, 47, 31, 81, 34],
    [38, 51, 107, 41, 69, 99, 115, 48],
    [47, 85, 57, 71, 92, 77, 109, 36],
    [39, 63, 97, 49, 118, 56, 92, 61],
    [47, 101, 71, 60, 88, 109, 52, 90],
]
num_workers = len(costs)
num_tasks = len(costs[0])

task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
# Maximum total of task sizes for any worker
total_size_max = 15

C++

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70, 50, 74, 12, 68}},
    {{35, 85, 55, 65, 48, 101, 70, 83}},
    {{125, 95, 90, 105, 59, 120, 36, 73}},
    {{45, 110, 95, 115, 104, 83, 37, 71}},
    {{60, 105, 80, 75, 59, 62, 93, 88}},
    {{45, 65, 110, 95, 47, 31, 81, 34}},
    {{38, 51, 107, 41, 69, 99, 115, 48}},
    {{47, 85, 57, 71, 92, 77, 109, 36}},
    {{39, 63, 97, 49, 118, 56, 92, 61}},
    {{47, 101, 71, 60, 88, 109, 52, 90}},
}};
const int num_workers = static_cast<int>(costs.size());
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = static_cast<int>(costs[0].size());
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
// Maximum total of task sizes for any worker
const int total_size_max = 15;

Java

int[][] costs = {
    {90, 76, 75, 70, 50, 74, 12, 68},
    {35, 85, 55, 65, 48, 101, 70, 83},
    {125, 95, 90, 105, 59, 120, 36, 73},
    {45, 110, 95, 115, 104, 83, 37, 71},
    {60, 105, 80, 75, 59, 62, 93, 88},
    {45, 65, 110, 95, 47, 31, 81, 34},
    {38, 51, 107, 41, 69, 99, 115, 48},
    {47, 85, 57, 71, 92, 77, 109, 36},
    {39, 63, 97, 49, 118, 56, 92, 61},
    {47, 101, 71, 60, 88, 109, 52, 90},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
// Maximum total of task sizes for any worker
final int totalSizeMax = 15;

C#

int[,] costs = {
    { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
    { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
    { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
    { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
    { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
// Maximum total of task sizes for any worker
int totalSizeMax = 15;

与前面的示例一样, 费用矩阵 提供了工作器 i 执行任务 j 的费用。 sizes 矢量提供了每个任务的大小。 total_size_max 是任务总大小的上限 由任意一个工作器执行。

创建模型

以下代码将创建模型。

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

创建变量

以下代码会为问题创建一个变量数组。

Python

x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

C++

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] = cp_model.NewBoolVar().WithName(
        absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

Literal[][] x = new Literal[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
    }
}

添加约束条件

以下代码为程序创建了约束条件。

Python

# Each worker is assigned to at most one task.
for worker in range(num_workers):
    model.add(
        sum(task_sizes[task] * x[worker, task] for task in range(num_tasks))
        <= total_size_max
    )

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    model.add_exactly_one(x[worker, task] for worker in range(num_workers))

C++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr task_sum;
  for (int task : all_tasks) {
    task_sum += x[worker][task] * task_sizes[task];
  }
  cp_model.AddLessOrEqual(task_sum, total_size_max);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  std::vector<BoolVar> tasks;
  for (int worker : all_workers) {
    tasks.push_back(x[worker][task]);
  }
  cp_model.AddExactlyOne(tasks);
}

Java

// Each worker has a maximum capacity.
for (int worker : allWorkers) {
  LinearExprBuilder expr = LinearExpr.newBuilder();
  for (int task : allTasks) {
    expr.addTerm(x[worker][task], taskSizes[task]);
  }
  model.addLessOrEqual(expr, totalSizeMax);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

C#

// Each worker is assigned to at most max task size.
foreach (int worker in allWorkers)
{
    BoolVar[] vars = new BoolVar[numTasks];
    foreach (int task in allTasks)
    {
        vars[task] = x[worker, task];
    }
    model.Add(LinearExpr.WeightedSum(vars, taskSizes) <= totalSizeMax);
}

// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    List<ILiteral> workers = new List<ILiteral>();
    foreach (int worker in allWorkers)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

创建目标

以下代码将创建目标函数。

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
model.minimize(sum(objective_terms))

C++

LinearExpr total_cost;
for (int worker : all_workers) {
  for (int task : all_tasks) {
    total_cost += x[worker][task] * costs[worker][task];
  }
}
cp_model.Minimize(total_cost);

Java

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

C#

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        obj.AddTerm(x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

调用求解器

以下代码会调用求解器。

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

显示结果

现在,我们可以输出解决方案了。

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Total cost = {solver.objective_value}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if solver.boolean_value(x[worker, task]):
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost = {costs[worker][task]}"
                )
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int worker : all_workers) {
  for (int task : all_tasks) {
    if (SolutionBooleanValue(response, x[worker][task])) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      if (solver.booleanValue(x[worker][task])) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            if (solver.Value(x[worker, task]) > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                  $"Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

程序的输出如下:

Minimum cost: 326
Worker  0  assigned to task  6   Cost =  12
Worker  1  assigned to task  0   Cost =  35
Worker  1  assigned to task  2   Cost =  55
Worker  2  assigned to task  4   Cost =  59
Worker  5  assigned to task  5   Cost =  31
Worker  5  assigned to task  7   Cost =  34
Worker  6  assigned to task  1   Cost =  51
Worker  8  assigned to task  3   Cost =  49

Time =  2.2198 seconds

整个计划

以下是整个计划。

Python

"""Solves a simple assignment problem."""
from ortools.sat.python import cp_model


def main() -> None:
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74, 12, 68],
        [35, 85, 55, 65, 48, 101, 70, 83],
        [125, 95, 90, 105, 59, 120, 36, 73],
        [45, 110, 95, 115, 104, 83, 37, 71],
        [60, 105, 80, 75, 59, 62, 93, 88],
        [45, 65, 110, 95, 47, 31, 81, 34],
        [38, 51, 107, 41, 69, 99, 115, 48],
        [47, 85, 57, 71, 92, 77, 109, 36],
        [39, 63, 97, 49, 118, 56, 92, 61],
        [47, 101, 71, 60, 88, 109, 52, 90],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
    # Maximum total of task sizes for any worker
    total_size_max = 15

    # Model
    model = cp_model.CpModel()

    # Variables
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

    # Constraints
    # Each worker is assigned to at most one task.
    for worker in range(num_workers):
        model.add(
            sum(task_sizes[task] * x[worker, task] for task in range(num_tasks))
            <= total_size_max
        )

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        model.add_exactly_one(x[worker, task] for worker in range(num_workers))

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    model.minimize(sum(objective_terms))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Total cost = {solver.objective_value}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if solver.boolean_value(x[worker, task]):
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost = {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++

// Solve assignment problem.
#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void AssignmentTaskSizes() {
  // Data
  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70, 50, 74, 12, 68}},
      {{35, 85, 55, 65, 48, 101, 70, 83}},
      {{125, 95, 90, 105, 59, 120, 36, 73}},
      {{45, 110, 95, 115, 104, 83, 37, 71}},
      {{60, 105, 80, 75, 59, 62, 93, 88}},
      {{45, 65, 110, 95, 47, 31, 81, 34}},
      {{38, 51, 107, 41, 69, 99, 115, 48}},
      {{47, 85, 57, 71, 92, 77, 109, 36}},
      {{39, 63, 97, 49, 118, 56, 92, 61}},
      {{47, 101, 71, 60, 88, 109, 52, 90}},
  }};
  const int num_workers = static_cast<int>(costs.size());
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = static_cast<int>(costs[0].size());
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
  // Maximum total of task sizes for any worker
  const int total_size_max = 15;

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr task_sum;
    for (int task : all_tasks) {
      task_sum += x[worker][task] * task_sizes[task];
    }
    cp_model.AddLessOrEqual(task_sum, total_size_max);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    std::vector<BoolVar> tasks;
    for (int worker : all_workers) {
      tasks.push_back(x[worker][task]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Objective
  LinearExpr total_cost;
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      total_cost += x[worker][task] * costs[worker][task];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      if (SolutionBooleanValue(response, x[worker][task])) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::AssignmentTaskSizes();
  return EXIT_SUCCESS;
}

Java

// CP-SAT example that solves an assignment problem.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentTaskSizesSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 76, 75, 70, 50, 74, 12, 68},
        {35, 85, 55, 65, 48, 101, 70, 83},
        {125, 95, 90, 105, 59, 120, 36, 73},
        {45, 110, 95, 115, 104, 83, 37, 71},
        {60, 105, 80, 75, 59, 62, 93, 88},
        {45, 65, 110, 95, 47, 31, 81, 34},
        {38, 51, 107, 41, 69, 99, 115, 48},
        {47, 85, 57, 71, 92, 77, 109, 36},
        {39, 63, 97, 49, 118, 56, 92, 61},
        {47, 101, 71, 60, 88, 109, 52, 90},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
    // Maximum total of task sizes for any worker
    final int totalSizeMax = 15;

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker has a maximum capacity.
    for (int worker : allWorkers) {
      LinearExprBuilder expr = LinearExpr.newBuilder();
      for (int task : allTasks) {
        expr.addTerm(x[worker][task], taskSizes[task]);
      }
      model.addLessOrEqual(expr, totalSizeMax);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          if (solver.booleanValue(x[worker][task])) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentTaskSizesSat() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class AssignmentTaskSizesSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
            { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
            { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
            { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
            { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
        // Maximum total of task sizes for any worker
        int totalSizeMax = 15;

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most max task size.
        foreach (int worker in allWorkers)
        {
            BoolVar[] vars = new BoolVar[numTasks];
            foreach (int task in allTasks)
            {
                vars[task] = x[worker, task];
            }
            model.Add(LinearExpr.WeightedSum(vars, taskSizes) <= totalSizeMax);
        }

        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            List<ILiteral> workers = new List<ILiteral>();
            foreach (int worker in allWorkers)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                obj.AddTerm(x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    if (solver.Value(x[worker, task]) > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                          $"Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}

MIP 解决方案

接下来,我们将介绍使用 MIP 求解器的分配问题的解决方案。

导入库

以下代码会导入所需的库。

Python

from ortools.linear_solver import pywraplp

C++

#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

定义数据

以下代码会为程序创建数据。

Python

costs = [
    [90, 76, 75, 70, 50, 74, 12, 68],
    [35, 85, 55, 65, 48, 101, 70, 83],
    [125, 95, 90, 105, 59, 120, 36, 73],
    [45, 110, 95, 115, 104, 83, 37, 71],
    [60, 105, 80, 75, 59, 62, 93, 88],
    [45, 65, 110, 95, 47, 31, 81, 34],
    [38, 51, 107, 41, 69, 99, 115, 48],
    [47, 85, 57, 71, 92, 77, 109, 36],
    [39, 63, 97, 49, 118, 56, 92, 61],
    [47, 101, 71, 60, 88, 109, 52, 90],
]
num_workers = len(costs)
num_tasks = len(costs[0])

task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
# Maximum total of task sizes for any worker
total_size_max = 15

C++

const std::vector<std::vector<int64_t>> costs = {{
    {{90, 76, 75, 70, 50, 74, 12, 68}},
    {{35, 85, 55, 65, 48, 101, 70, 83}},
    {{125, 95, 90, 105, 59, 120, 36, 73}},
    {{45, 110, 95, 115, 104, 83, 37, 71}},
    {{60, 105, 80, 75, 59, 62, 93, 88}},
    {{45, 65, 110, 95, 47, 31, 81, 34}},
    {{38, 51, 107, 41, 69, 99, 115, 48}},
    {{47, 85, 57, 71, 92, 77, 109, 36}},
    {{39, 63, 97, 49, 118, 56, 92, 61}},
    {{47, 101, 71, 60, 88, 109, 52, 90}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
// Maximum total of task sizes for any worker
const int total_size_max = 15;

Java

double[][] costs = {
    {90, 76, 75, 70, 50, 74, 12, 68},
    {35, 85, 55, 65, 48, 101, 70, 83},
    {125, 95, 90, 105, 59, 120, 36, 73},
    {45, 110, 95, 115, 104, 83, 37, 71},
    {60, 105, 80, 75, 59, 62, 93, 88},
    {45, 65, 110, 95, 47, 31, 81, 34},
    {38, 51, 107, 41, 69, 99, 115, 48},
    {47, 85, 57, 71, 92, 77, 109, 36},
    {39, 63, 97, 49, 118, 56, 92, 61},
    {47, 101, 71, 60, 88, 109, 52, 90},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
// Maximum total of task sizes for any worker
final int totalSizeMax = 15;

C#

int[,] costs = {
    { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
    { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
    { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
    { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
    { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
// Maximum total of task sizes for any worker
int totalSizeMax = 15;

声明求解器

以下代码将创建求解器。

Python

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver("SCIP")

if not solver:
    return

C++

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

创建变量

以下代码会为问题创建一个变量数组。

Python

# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

C++

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] =
        solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
  }
}

C#

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
    }
}

添加约束条件

以下代码为程序创建了约束条件。

Python

# The total size of the tasks each worker takes on is at most total_size_max.
for worker in range(num_workers):
    solver.Add(
        solver.Sum(
            [task_sizes[task] * x[worker, task] for task in range(num_tasks)]
        )
        <= total_size_max
    )

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

C++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr worker_sum;
  for (int task : all_tasks) {
    worker_sum += LinearExpr(x[worker][task]) * task_sizes[task];
  }
  solver->MakeRowConstraint(worker_sum <= total_size_max);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  LinearExpr task_sum;
  for (int worker : all_workers) {
    task_sum += x[worker][task];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

Java

// Each worker is assigned to at most max task size.
for (int worker : allWorkers) {
  MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, "");
  for (int task : allTasks) {
    constraint.setCoefficient(x[worker][task], taskSizes[task]);
  }
}
// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int worker : allWorkers) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}

C#

// Each worker is assigned to at most max task size.
foreach (int worker in allWorkers)
{
    Constraint constraint = solver.MakeConstraint(0, totalSizeMax, "");
    foreach (int task in allTasks)
    {
        constraint.SetCoefficient(x[worker, task], taskSizes[task]);
    }
}
// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    foreach (int worker in allWorkers)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}

创建目标

以下代码将创建目标函数。

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
solver.Minimize(solver.Sum(objective_terms))

C++

MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
  for (int task : all_tasks) {
    objective->SetCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective->SetMinimization();

Java

MPObjective objective = solver.objective();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    objective.setCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective.setMinimization();

C#

Objective objective = solver.Objective();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        objective.SetCoefficient(x[worker, task], costs[worker, task]);
    }
}
objective.SetMinimization();

调用求解器

以下代码会调用求解器并显示结果。

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++

const MPSolver::ResultStatus result_status = solver->Solve();

Java

MPSolver.ResultStatus resultStatus = solver.solve();

C#

Solver.ResultStatus resultStatus = solver.Solve();

显示结果

现在,我们可以输出解决方案了。

Python

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f"Total cost = {solver.Objective().Value()}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if x[worker, task].solution_value() > 0.5:
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost: {costs[worker][task]}"
                )
else:
    print("No solution found.")

C++

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
  for (int task : all_tasks) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[worker][task]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task].solutionValue() > 0.5) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[worker, task].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

以下是程序的输出。

Minimum cost =  326.0

Worker 0  assigned to task 6   Cost =  12
Worker 1  assigned to task 0   Cost =  35
Worker 1  assigned to task 2   Cost =  55
Worker 4  assigned to task 4   Cost =  59
Worker 5  assigned to task 5   Cost =  31
Worker 5  assigned to task 7   Cost =  34
Worker 6  assigned to task 1   Cost =  51
Worker 8  assigned to task 3   Cost =  49

Time =  0.0167 seconds

整个计划

以下是整个计划。

Python

"""MIP example that solves an assignment problem."""
from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74, 12, 68],
        [35, 85, 55, 65, 48, 101, 70, 83],
        [125, 95, 90, 105, 59, 120, 36, 73],
        [45, 110, 95, 115, 104, 83, 37, 71],
        [60, 105, 80, 75, 59, 62, 93, 88],
        [45, 65, 110, 95, 47, 31, 81, 34],
        [38, 51, 107, 41, 69, 99, 115, 48],
        [47, 85, 57, 71, 92, 77, 109, 36],
        [39, 63, 97, 49, 118, 56, 92, 61],
        [47, 101, 71, 60, 88, 109, 52, 90],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
    # Maximum total of task sizes for any worker
    total_size_max = 15

    # Solver
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")

    if not solver:
        return

    # Variables
    # x[i, j] is an array of 0-1 variables, which will be 1
    # if worker i is assigned to task j.
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

    # Constraints
    # The total size of the tasks each worker takes on is at most total_size_max.
    for worker in range(num_workers):
        solver.Add(
            solver.Sum(
                [task_sizes[task] * x[worker, task] for task in range(num_tasks)]
            )
            <= total_size_max
        )

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f"Total cost = {solver.Objective().Value()}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if x[worker, task].solution_value() > 0.5:
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost: {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++

// Solve a simple assignment problem.
#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentTeamsMip() {
  // Data
  const std::vector<std::vector<int64_t>> costs = {{
      {{90, 76, 75, 70, 50, 74, 12, 68}},
      {{35, 85, 55, 65, 48, 101, 70, 83}},
      {{125, 95, 90, 105, 59, 120, 36, 73}},
      {{45, 110, 95, 115, 104, 83, 37, 71}},
      {{60, 105, 80, 75, 59, 62, 93, 88}},
      {{45, 65, 110, 95, 47, 31, 81, 34}},
      {{38, 51, 107, 41, 69, 99, 115, 48}},
      {{47, 85, 57, 71, 92, 77, 109, 36}},
      {{39, 63, 97, 49, 118, 56, 92, 61}},
      {{47, 101, 71, 60, 88, 109, 52, 90}},
  }};
  const int num_workers = costs.size();
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = costs[0].size();
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
  // Maximum total of task sizes for any worker
  const int total_size_max = 15;

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] =
          solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr worker_sum;
    for (int task : all_tasks) {
      worker_sum += LinearExpr(x[worker][task]) * task_sizes[task];
    }
    solver->MakeRowConstraint(worker_sum <= total_size_max);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    LinearExpr task_sum;
    for (int worker : all_workers) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      objective->SetCoefficient(x[worker][task], costs[worker][task]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentTeamsMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** MIP example that solves an assignment problem. */
public class AssignmentTaskSizesMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 76, 75, 70, 50, 74, 12, 68},
        {35, 85, 55, 65, 48, 101, 70, 83},
        {125, 95, 90, 105, 59, 120, 36, 73},
        {45, 110, 95, 115, 104, 83, 37, 71},
        {60, 105, 80, 75, 59, 62, 93, 88},
        {45, 65, 110, 95, 47, 31, 81, 34},
        {38, 51, 107, 41, 69, 99, 115, 48},
        {47, 85, 57, 71, 92, 77, 109, 36},
        {39, 63, 97, 49, 118, 56, 92, 61},
        {47, 101, 71, 60, 88, 109, 52, 90},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
    // Maximum total of task sizes for any worker
    final int totalSizeMax = 15;

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most max task size.
    for (int worker : allWorkers) {
      MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, "");
      for (int task : allTasks) {
        constraint.setCoefficient(x[worker][task], taskSizes[task]);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int worker : allWorkers) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        objective.setCoefficient(x[worker][task], costs[worker][task]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[worker][task].solutionValue() > 0.5) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentTaskSizesMip() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class AssignmentTaskSizesMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
            { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
            { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
            { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
            { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
        // Maximum total of task sizes for any worker
        int totalSizeMax = 15;

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most max task size.
        foreach (int worker in allWorkers)
        {
            Constraint constraint = solver.MakeConstraint(0, totalSizeMax, "");
            foreach (int task in allTasks)
            {
                constraint.SetCoefficient(x[worker, task], taskSizes[task]);
            }
        }
        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            foreach (int worker in allWorkers)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }

        // Objective
        Objective objective = solver.Objective();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                objective.SetCoefficient(x[worker, task], costs[worker, task]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[worker, task].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}