处罚和访问次数减少

在本部分中,我们将介绍如何处理由于限制条件而导致没有可行解决方案的路由问题。例如,如果您受到限制容量的 VRP,其中所有位置的总需求超过车辆的总容量,则没有解决方案。在这种情况下,这些车辆必须限行前往某些地点。问题在于如何确定要丢弃哪些访问。

为了解决这个问题,我们在所有位置引入了新的费用(称为处罚)。每次到访某个地点时,处罚会计入行程总里程。然后,求解器会找到一条路线,该路线会最大限度地减小总距离,并降低所有丢失位置的处罚。

举个例子,假设存在具有如下图所示容量限制的简单 VRP,其中三个位置(仓库位置)旁边的数字是需求。

假设一辆车的容量是 50。它无法访问所有三个位置(A、B 和 C),因为总需求为 60。为了解决这个问题,您可以为每个营业地点分配严重的处罚,例如 100。检测到问题不可行后,求解器会丢弃位置 B 并返回以下路线:Depot -> A -> C -> Depot

这是访问三个位置中两个位置最短的路由(距离为 55)。

惩罚大小

在上面的示例中,我们选择的惩罚大于位置之间所有距离的总和(不包括仓库)。因此,求解某个位置使问题变得可行后,求解器不会删除任何其他位置,因为这样做会招致超过旅行距离的进一步减少。

假设您想尽可能多地提交文件,这提供了令人满意的解决方案。

如果您不需要尽可能多地提交内容,则可能需要指定更小的惩罚,此时,求解器可能会丢弃超出使问题可行所需的位置。例如,如果除了基本旅行费用之外,前往其他地点会有额外的费用,您可以执行此操作。

示例

接下来,我们展示了一个更大的 VRP 示例,可以使用惩罚来解决。该示例与之前的 CVRP 示例类似,但这一次,我们增加了一些需求,迫使一些车辆放弃访问。

地理位置和新需求的图表如下所示。

使用 OR 工具解析示例

以下部分介绍了如何使用 OR 工具解决该示例。

创建数据

此示例中的数据包括上一个 VRP 示例中的数据,并添加了以下需求和容量:

Python

    data["demands"] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8]
    data["vehicle_capacities"] = [15, 15, 15, 15]

C++

  const std::vector<int64_t> demands{
      0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8,
  };
  const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};

Java

    public final long[] demands = {0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8};
    public final long[] vehicleCapacities = {15, 15, 15, 15};

C#

        public long[] Demands = { 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8 };
        public long[] VehicleCapacities = { 15, 15, 15, 15 };

添加容量限制和惩罚

以下代码添加了需求回调和容量限制,并使用 AddDisjunction 方法添加惩罚。

Python

    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data["demands"][from_node]

    demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data["vehicle_capacities"],  # vehicle maximum capacities
        True,  # start cumul to zero
        "Capacity",
    )
    # Allow to drop nodes.
    penalty = 1000
    for node in range(1, len(data["distance_matrix"])):
        routing.AddDisjunction([manager.NodeToIndex(node)], penalty)

C++

  const int demand_callback_index = routing.RegisterUnaryTransitCallback(
      [&data, &manager](const int64_t from_index) -> int64_t {
        // Convert from routing variable Index to demand NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        return data.demands[from_node];
      });
  routing.AddDimensionWithVehicleCapacity(
      demand_callback_index,    // transit callback index
      int64_t{0},               // null capacity slack
      data.vehicle_capacities,  // vehicle maximum capacities
      true,                     // start cumul to zero
      "Capacity");
  // Allow to drop nodes.
  int64_t penalty{1000};
  for (int i = 1; i < data.distance_matrix.size(); ++i) {
    routing.AddDisjunction(
        {manager.NodeToIndex(RoutingIndexManager::NodeIndex(i))}, penalty);
  }

Java

    final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      return data.demands[fromNode];
    });
    routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
        data.vehicleCapacities, // vehicle maximum capacities
        true, // start cumul to zero
        "Capacity");
    // Allow to drop nodes.
    long penalty = 1000;
    for (int i = 1; i < data.distanceMatrix.length; ++i) {
      routing.addDisjunction(new long[] {manager.nodeToIndex(i)}, penalty);
    }

C#

        int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
                                                                       {
                                                                           // Convert from routing variable Index to
                                                                           // demand NodeIndex.
                                                                           var fromNode =
                                                                               manager.IndexToNode(fromIndex);
                                                                           return data.Demands[fromNode];
                                                                       });
        routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
                                                data.VehicleCapacities, // vehicle maximum capacities
                                                true,                   // start cumul to zero
                                                "Capacity");
        // Allow to drop nodes.
        long penalty = 1000;
        for (int i = 1; i < data.DistanceMatrix.GetLength(0); ++i)
        {
            routing.AddDisjunction(new long[] { manager.NodeToIndex(i) }, penalty);
        }

在这种情况下,求解就只是求解器用来决定是否在解决方案中包含给定位置的一种变量。在此示例中,该方法会为每个位置添加相同的惩罚,但通常您可以为不同位置添加不同的惩罚。

添加解决方案打印机

解决方案打印机(如下所示)与 CVRP 示例中的打印机类似,但也显示了放置的位置。

Python

def print_solution(data, manager, routing, assignment):
    """Prints assignment on console."""
    print(f"Objective: {assignment.ObjectiveValue()}")
    # Display dropped nodes.
    dropped_nodes = "Dropped nodes:"
    for node in range(routing.Size()):
        if routing.IsStart(node) or routing.IsEnd(node):
            continue
        if assignment.Value(routing.NextVar(node)) == node:
            dropped_nodes += f" {manager.IndexToNode(node)}"
    print(dropped_nodes)
    # Display routes
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data["demands"][node_index]
            plan_output += f" {node_index} Load({route_load}) -> "
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        plan_output += f"Load of the route: {route_load}\n"
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print(f"Total Distance of all routes: {total_distance}m")
    print(f"Total Load of all routes: {total_load}")

C++

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Display dropped nodes.
  std::ostringstream dropped_nodes;
  for (int64_t node = 0; node < routing.Size(); ++node) {
    if (routing.IsStart(node) || routing.IsEnd(node)) continue;
    if (solution.Value(routing.NextVar(node)) == node) {
      dropped_nodes << " " << manager.IndexToNode(node).value();
    }
  }
  LOG(INFO) << "Dropped nodes:" << dropped_nodes.str();
  // Display routes
  int64_t total_distance{0};
  int64_t total_load{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    int64_t route_load{0};
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      const int node_index = manager.IndexToNode(index).value();
      route_load += data.demands[node_index];
      route << node_index << " Load(" << route_load << ") -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    LOG(INFO) << "Load of the route: " << route_load;
    total_distance += route_distance;
    total_load += route_load;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "Total load of all routes: " << total_load;
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    // Display dropped nodes.
    String droppedNodes = "Dropped nodes:";
    for (int node = 0; node < routing.size(); ++node) {
      if (routing.isStart(node) || routing.isEnd(node)) {
        continue;
      }
      if (solution.value(routing.nextVar(node)) == node) {
        droppedNodes += " " + manager.indexToNode(node);
      }
    }
    logger.info(droppedNodes);
    // Display routes
    long totalDistance = 0;
    long totalLoad = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      long routeLoad = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        long nodeIndex = manager.indexToNode(index);
        routeLoad += data.demands[(int) nodeIndex];
        route += nodeIndex + " Load(" + routeLoad + ") -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      route += manager.indexToNode(routing.end(i));
      logger.info(route);
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
      totalLoad += routeLoad;
    }
    logger.info("Total Distance of all routes: " + totalDistance + "m");
    logger.info("Total Load of all routes: " + totalLoad);
  }

C#

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        // Display dropped nodes.
        string droppedNodes = "Dropped nodes:";
        for (int index = 0; index < routing.Size(); ++index)
        {
            if (routing.IsStart(index) || routing.IsEnd(index))
            {
                continue;
            }
            if (solution.Value(routing.NextVar(index)) == index)
            {
                droppedNodes += " " + manager.IndexToNode(index);
            }
        }
        Console.WriteLine("{0}", droppedNodes);
        // Inspect solution.
        long totalDistance = 0;
        long totalLoad = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            long routeLoad = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                long nodeIndex = manager.IndexToNode(index);
                routeLoad += data.Demands[nodeIndex];
                Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
            totalLoad += routeLoad;
        }
        Console.WriteLine("Total Distance of all routes: {0}m", totalDistance);
        Console.WriteLine("Total Load of all routes: {0}m", totalLoad);
    }

运行程序

当您运行该程序时,它会返回如下所示的输出。请注意,求解器会丢弃位置 6 和 15。

Objective: 7936
Dropped nodes: 6 15
Route for vehicle 0:
 0 Load(0) ->  9 Load(1) ->  14 Load(7) ->  16 Load(15) ->  0 Load(15)
Distance of the route: 1324m
Load of the route: 15

Route for vehicle 1:
 0 Load(0) ->  12 Load(2) ->  11 Load(3) ->  4 Load(9) ->  3 Load(12) ->  1 Load(13) ->  0 Load(13)
Distance of the route: 1872m
Load of the route: 13

Route for vehicle 2:
 0 Load(0) ->  7 Load(8) ->  13 Load(14) ->  0 Load(14)
Distance of the route: 868m
Load of the route: 14

Route for vehicle 3:
 0 Load(0) ->  8 Load(8) ->  10 Load(10) ->  2 Load(11) ->  5 Load(14) ->  0 Load(14)
Distance of the route: 1872m
Load of the route: 14

Total Distance of all routes: 5936m
Total Load of all routes: 56

这是路线图。

完成计划

以下是完整的计划。

Python

"""Capacited Vehicles Routing Problem (CVRP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["demands"] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8]
    data["vehicle_capacities"] = [15, 15, 15, 15]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, assignment):
    """Prints assignment on console."""
    print(f"Objective: {assignment.ObjectiveValue()}")
    # Display dropped nodes.
    dropped_nodes = "Dropped nodes:"
    for node in range(routing.Size()):
        if routing.IsStart(node) or routing.IsEnd(node):
            continue
        if assignment.Value(routing.NextVar(node)) == node:
            dropped_nodes += f" {manager.IndexToNode(node)}"
    print(dropped_nodes)
    # Display routes
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data["demands"][node_index]
            plan_output += f" {node_index} Load({route_load}) -> "
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        plan_output += f"Load of the route: {route_load}\n"
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print(f"Total Distance of all routes: {total_distance}m")
    print(f"Total Load of all routes: {total_load}")


def main():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Capacity constraint.
    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data["demands"][from_node]

    demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data["vehicle_capacities"],  # vehicle maximum capacities
        True,  # start cumul to zero
        "Capacity",
    )
    # Allow to drop nodes.
    penalty = 1000
    for node in range(1, len(data["distance_matrix"])):
        routing.AddDisjunction([manager.NodeToIndex(node)], penalty)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )
    search_parameters.local_search_metaheuristic = (
        routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
    )
    search_parameters.time_limit.FromSeconds(1)

    # Solve the problem.
    assignment = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if assignment:
        print_solution(data, manager, routing, assignment)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <vector>

#include "google/protobuf/duration.pb.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const std::vector<int64_t> demands{
      0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8,
  };
  const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  // Display dropped nodes.
  std::ostringstream dropped_nodes;
  for (int64_t node = 0; node < routing.Size(); ++node) {
    if (routing.IsStart(node) || routing.IsEnd(node)) continue;
    if (solution.Value(routing.NextVar(node)) == node) {
      dropped_nodes << " " << manager.IndexToNode(node).value();
    }
  }
  LOG(INFO) << "Dropped nodes:" << dropped_nodes.str();
  // Display routes
  int64_t total_distance{0};
  int64_t total_load{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    int64_t route_load{0};
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      const int node_index = manager.IndexToNode(index).value();
      route_load += data.demands[node_index];
      route << node_index << " Load(" << route_load << ") -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    LOG(INFO) << "Load of the route: " << route_load;
    total_distance += route_distance;
    total_load += route_load;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "Total load of all routes: " << total_load;
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpDropNodes() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Capacity constraint.
  const int demand_callback_index = routing.RegisterUnaryTransitCallback(
      [&data, &manager](const int64_t from_index) -> int64_t {
        // Convert from routing variable Index to demand NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        return data.demands[from_node];
      });
  routing.AddDimensionWithVehicleCapacity(
      demand_callback_index,    // transit callback index
      int64_t{0},               // null capacity slack
      data.vehicle_capacities,  // vehicle maximum capacities
      true,                     // start cumul to zero
      "Capacity");
  // Allow to drop nodes.
  int64_t penalty{1000};
  for (int i = 1; i < data.distance_matrix.size(); ++i) {
    routing.AddDisjunction(
        {manager.NodeToIndex(RoutingIndexManager::NodeIndex(i))}, penalty);
  }

  // Setting first solution heuristic.
  RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters();
  search_parameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  search_parameters.set_local_search_metaheuristic(
      LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
  search_parameters.mutable_time_limit()->set_seconds(1);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(search_parameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpDropNodes();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.LocalSearchMetaheuristic;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import com.google.protobuf.Duration;
import java.util.logging.Logger;

/** Minimal VRP.*/
public class VrpDropNodes {
  private static final Logger logger = Logger.getLogger(VrpDropNodes.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final long[] demands = {0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8};
    public final long[] vehicleCapacities = {15, 15, 15, 15};
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    // Display dropped nodes.
    String droppedNodes = "Dropped nodes:";
    for (int node = 0; node < routing.size(); ++node) {
      if (routing.isStart(node) || routing.isEnd(node)) {
        continue;
      }
      if (solution.value(routing.nextVar(node)) == node) {
        droppedNodes += " " + manager.indexToNode(node);
      }
    }
    logger.info(droppedNodes);
    // Display routes
    long totalDistance = 0;
    long totalLoad = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      long routeLoad = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        long nodeIndex = manager.indexToNode(index);
        routeLoad += data.demands[(int) nodeIndex];
        route += nodeIndex + " Load(" + routeLoad + ") -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      route += manager.indexToNode(routing.end(i));
      logger.info(route);
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
      totalLoad += routeLoad;
    }
    logger.info("Total Distance of all routes: " + totalDistance + "m");
    logger.info("Total Load of all routes: " + totalLoad);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Capacity constraint.
    final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      return data.demands[fromNode];
    });
    routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
        data.vehicleCapacities, // vehicle maximum capacities
        true, // start cumul to zero
        "Capacity");
    // Allow to drop nodes.
    long penalty = 1000;
    for (int i = 1; i < data.distanceMatrix.length; ++i) {
      routing.addDisjunction(new long[] {manager.nodeToIndex(i)}, penalty);
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH)
            .setTimeLimit(Duration.newBuilder().setSeconds(1).build())
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
using Google.Protobuf.WellKnownTypes; // Duration

/// <summary>
///   Minimal Vrp with drop nodes.
/// </summary>
public class VrpDropNodes
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
        };
        public long[] Demands = { 0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8 };
        public long[] VehicleCapacities = { 15, 15, 15, 15 };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        // Display dropped nodes.
        string droppedNodes = "Dropped nodes:";
        for (int index = 0; index < routing.Size(); ++index)
        {
            if (routing.IsStart(index) || routing.IsEnd(index))
            {
                continue;
            }
            if (solution.Value(routing.NextVar(index)) == index)
            {
                droppedNodes += " " + manager.IndexToNode(index);
            }
        }
        Console.WriteLine("{0}", droppedNodes);
        // Inspect solution.
        long totalDistance = 0;
        long totalLoad = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            long routeLoad = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                long nodeIndex = manager.IndexToNode(index);
                routeLoad += data.Demands[nodeIndex];
                Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
            totalLoad += routeLoad;
        }
        Console.WriteLine("Total Distance of all routes: {0}m", totalDistance);
        Console.WriteLine("Total Load of all routes: {0}m", totalLoad);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Capacity constraint.
        int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
                                                                       {
                                                                           // Convert from routing variable Index to
                                                                           // demand NodeIndex.
                                                                           var fromNode =
                                                                               manager.IndexToNode(fromIndex);
                                                                           return data.Demands[fromNode];
                                                                       });
        routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
                                                data.VehicleCapacities, // vehicle maximum capacities
                                                true,                   // start cumul to zero
                                                "Capacity");
        // Allow to drop nodes.
        long penalty = 1000;
        for (int i = 1; i < data.DistanceMatrix.GetLength(0); ++i)
        {
            routing.AddDisjunction(new long[] { manager.NodeToIndex(i) }, penalty);
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
        searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
        searchParameters.TimeLimit = new Duration { Seconds = 1 };

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}