许多车辆路线问题都涉及为仅在特定时间段内空闲的客户安排上门服务。
这些问题称为具有时间范围的车辆路线规划问题 (VRPTW)。
VRPTW 示例
本页将通过一个示例来了解如何解决 VRPTW 问题。由于问题涉及时间窗口,因此数据包括时间矩阵,其中包含位置之间的行程时间(而不是先前示例中的距离矩阵)。
下图以蓝色显示要游览的地点,以黑色显示仓库。 每个地点的上方都会显示时间范围。如需详细了解如何定义位置,请参阅 VRP 部分中的位置坐标。
我们的目标是尽可能缩短车辆的总行程时间。
使用 OR 工具解决 VRPTW 示例
以下部分介绍了如何使用 OR 工具求解 VRPTW 示例。
创建数据
以下函数为问题创建数据。
def create_data_model():
"""Stores the data for the problem."""
data = {}
data["time_matrix"] = [
[0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
[6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
[9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
[8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
[7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
[3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
[6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
[2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
[3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
[2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
[6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
[6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
[4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
[4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
[5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
[9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
[7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
]
data["time_windows"] = [
(0, 5), # depot
(7, 12), # 1
(10, 15), # 2
(16, 18), # 3
(10, 13), # 4
(0, 5), # 5
(5, 10), # 6
(0, 4), # 7
(5, 10), # 8
(0, 3), # 9
(10, 16), # 10
(10, 15), # 11
(0, 5), # 12
(5, 10), # 13
(7, 8), # 14
(10, 15), # 15
(11, 15), # 16
]
data["num_vehicles"] = 4
data["depot"] = 0
return data
-
data['time_matrix']
:不同地点之间的行程时间数组。请注意,这与之前使用距离矩阵的示例不同。如果所有车辆以相同的速度行驶,使用距离矩阵或时间矩阵将获得相同的解决方案,因为行程距离是行程时间的恒定倍数。 -
data['time_windows']
:营业地点的时间范围数组,可视为用户访问的广告请求时间。车辆必须在其指定时间范围内造访某个地点。 -
data['num_vehicles']
:车队中的车辆数量。 -
data['depot']
:仓库的索引。
struct DataModel {
const std::vector<std::vector<int64_t>> time_matrix{
{0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
{6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
{9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
{8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
{7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
{3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
{6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
{2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
{3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
{2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
{6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
{6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
{4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
{4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
{5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
{9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
{7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
};
const std::vector<std::pair<int64_t, int64_t>> time_windows{
{0, 5}, // depot
{7, 12}, // 1
{10, 15}, // 2
{16, 18}, // 3
{10, 13}, // 4
{0, 5}, // 5
{5, 10}, // 6
{0, 4}, // 7
{5, 10}, // 8
{0, 3}, // 9
{10, 16}, // 10
{10, 15}, // 11
{0, 5}, // 12
{5, 10}, // 13
{7, 8}, // 14
{10, 15}, // 15
{11, 15}, // 16
};
const int num_vehicles = 4;
const RoutingIndexManager::NodeIndex depot{0};
};
-
time_matrix
:不同地点之间的行程时间数组。请注意,这与之前使用距离矩阵的示例不同。如果所有车辆以相同的速度行驶,使用距离矩阵或时间矩阵将获得相同的解决方案,因为行程距离是行程时间的恒定倍数。 -
time_windows
:营业地点的时间范围数组,可视为用户访问的广告请求时间。车辆必须在其指定时间范围内造访某个地点。 -
num_vehicles
:车队中的车辆数量。 -
depot
:仓库的索引。
static class DataModel {
public final long[][] timeMatrix = {
{0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
{6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
{9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
{8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
{7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
{3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
{6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
{2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
{3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
{2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
{6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
{6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
{4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
{4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
{5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
{9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
{7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
};
public final long[][] timeWindows = {
{0, 5}, // depot
{7, 12}, // 1
{10, 15}, // 2
{16, 18}, // 3
{10, 13}, // 4
{0, 5}, // 5
{5, 10}, // 6
{0, 4}, // 7
{5, 10}, // 8
{0, 3}, // 9
{10, 16}, // 10
{10, 15}, // 11
{0, 5}, // 12
{5, 10}, // 13
{7, 8}, // 14
{10, 15}, // 15
{11, 15}, // 16
};
public final int vehicleNumber = 4;
public final int depot = 0;
}
-
timeMatrix
:不同地点之间的行程时间数组。请注意,这与之前使用距离矩阵的示例不同。如果所有车辆以相同的速度行驶,使用距离矩阵或时间矩阵将获得相同的解决方案,因为行程距离是行程时间的恒定倍数。 -
timeWindows
:营业地点的时间范围数组,可视为用户访问的广告请求时间。车辆必须在其指定时间范围内造访某个地点。 -
vehicleNumber
:车队中的车辆数量。 -
depot
:仓库的索引。
class DataModel
{
public long[,] TimeMatrix = {
{ 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
{ 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
{ 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
{ 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
{ 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
{ 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
{ 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
{ 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
{ 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
{ 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
{ 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
{ 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
{ 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
{ 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
{ 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
{ 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
{ 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
};
public long[,] TimeWindows = {
{ 0, 5 }, // depot
{ 7, 12 }, // 1
{ 10, 15 }, // 2
{ 16, 18 }, // 3
{ 10, 13 }, // 4
{ 0, 5 }, // 5
{ 5, 10 }, // 6
{ 0, 4 }, // 7
{ 5, 10 }, // 8
{ 0, 3 }, // 9
{ 10, 16 }, // 10
{ 10, 15 }, // 11
{ 0, 5 }, // 12
{ 5, 10 }, // 13
{ 7, 8 }, // 14
{ 10, 15 }, // 15
{ 11, 15 }, // 16
};
public int VehicleNumber = 4;
public int Depot = 0;
};
-
TimeMatrix
:不同地点之间的行程时间数组。请注意,这与之前使用距离矩阵的示例不同。如果所有车辆以相同的速度行驶,使用距离矩阵或时间矩阵将获得相同的解决方案,因为行程距离是行程时间的恒定倍数。 -
TimeWindows
:营业地点的时间范围数组,可视为用户访问的广告请求时间。车辆必须在其指定时间范围内造访某个地点。 -
VehicleNumber
:车队中的车辆数量。 -
Depot
:仓库的索引。
时间回调
以下函数会创建时间回调并将其传递给求解器。它还将弧线费用(用于定义行程费用)设置为地点之间的行程时间。
def time_callback(from_index, to_index):
"""Returns the travel time between the two nodes."""
# Convert from routing variable Index to time matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data["time_matrix"][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(time_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
const int transit_callback_index = routing.RegisterTransitCallback(
[&data, &manager](const int64_t from_index,
const int64_t to_index) -> int64_t {
// Convert from routing variable Index to time matrix NodeIndex.
const int from_node = manager.IndexToNode(from_index).value();
const int to_node = manager.IndexToNode(to_index).value();
return data.time_matrix[from_node][to_node];
});
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
final int transitCallbackIndex =
routing.registerTransitCallback((long fromIndex, long toIndex) -> {
// Convert from routing variable Index to user NodeIndex.
int fromNode = manager.indexToNode(fromIndex);
int toNode = manager.indexToNode(toIndex);
return data.timeMatrix[fromNode][toNode];
});
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
{
// Convert from routing variable Index to time
// matrix NodeIndex.
var fromNode = manager.IndexToNode(fromIndex);
var toNode = manager.IndexToNode(toIndex);
return data.TimeMatrix[fromNode, toNode];
});
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
添加时间范围限制
以下代码会为所有位置添加时间范围限制。
time = "Time"
routing.AddDimension(
transit_callback_index,
30, # allow waiting time
30, # maximum time per vehicle
False, # Don't force start cumul to zero.
time,
)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data["time_windows"]):
if location_idx == data["depot"]:
continue
index = manager.NodeToIndex(location_idx)
time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
depot_idx = data["depot"]
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
time_dimension.CumulVar(index).SetRange(
data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
)
for i in range(data["num_vehicles"]):
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.Start(i))
)
routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))
const std::string time = "Time";
routing.AddDimension(transit_callback_index, // transit callback index
int64_t{30}, // allow waiting time
int64_t{30}, // maximum time per vehicle
false, // Don't force start cumul to zero
time);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
// Add time window constraints for each location except depot.
for (int i = 1; i < data.time_windows.size(); ++i) {
const int64_t index =
manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
data.time_windows[i].second);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.num_vehicles; ++i) {
const int64_t index = routing.Start(i);
time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
data.time_windows[0].second);
}
for (int i = 0; i < data.num_vehicles; ++i) {
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.Start(i)));
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.End(i)));
}
routing.addDimension(transitCallbackIndex, // transit callback
30, // allow waiting time
30, // vehicle maximum capacities
false, // start cumul to zero
"Time");
RoutingDimension timeDimension = routing.getMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.timeWindows.length; ++i) {
long index = manager.nodeToIndex(i);
timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.vehicleNumber; ++i) {
long index = routing.start(i);
timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
}
for (int i = 0; i < data.vehicleNumber; ++i) {
routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
}
routing.AddDimension(transitCallbackIndex, // transit callback
30, // allow waiting time
30, // vehicle maximum capacities
false, // start cumul to zero
"Time");
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
long index = manager.NodeToIndex(i);
timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.VehicleNumber; ++i)
{
long index = routing.Start(i);
timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
}
for (int i = 0; i < data.VehicleNumber; ++i)
{
routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
}
该代码会创建一个表示车辆行程时间的维度,类似于前面示例中行程距离或需求的维度。维度用于跟踪车辆路线上累积的数量。在上面的代码中,time_dimension.CumulVar(index)
是车辆到达具有给定 index
的地点时的累计行程时间。
该维度使用 AddDimension
方法创建,该方法具有以下参数:
- 行程时间回调的索引:
transit_callback_index
- Slack 的上限(在位置的等待时间):
30
。虽然在 CVRP 示例中将此设置为 0,但由于时间窗口限制,VRPTW 必须允许正等待时间。 - 每辆车的路线总时间上限:
30
- 一个布尔值变量,用于指定是否在每辆车的路线开始时将累积变量设置为零。
- 维度的名称。
接下来,代码行
for location_idx, time_window in enumerate(data["time_windows"]):
if location_idx == data["depot"]:
continue
index = manager.NodeToIndex(location_idx)
time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
for (int i = 1; i < data.time_windows.size(); ++i) {
const int64_t index =
manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
data.time_windows[i].second);
}
for (int i = 1; i < data.timeWindows.length; ++i) {
long index = manager.nodeToIndex(i);
timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
long index = manager.NodeToIndex(i);
timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}
要求车辆必须在营业地点的时间范围内前往营业地点。
设置搜索参数
以下代码会设置默认搜索参数和用于查找第一个解决方案的启发式方法:
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
RoutingSearchParameters searchParameters =
main.defaultRoutingSearchParameters()
.toBuilder()
.setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
.build();
RoutingSearchParameters searchParameters =
operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
添加解决方案打印机
显示解决方案的函数如下所示。
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
time_dimension = routing.GetDimensionOrDie("Time")
total_time = 0
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
while not routing.IsEnd(index):
time_var = time_dimension.CumulVar(index)
plan_output += (
f"{manager.IndexToNode(index)}"
f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
" -> "
)
index = solution.Value(routing.NextVar(index))
time_var = time_dimension.CumulVar(index)
plan_output += (
f"{manager.IndexToNode(index)}"
f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
)
plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
print(plan_output)
total_time += solution.Min(time_var)
print(f"Total time of all routes: {total_time}min")
//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
const RoutingModel& routing, const Assignment& solution) {
const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
int64_t total_time{0};
for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
int64_t index = routing.Start(vehicle_id);
LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
std::ostringstream route;
while (!routing.IsEnd(index)) {
auto time_var = time_dimension.CumulVar(index);
route << manager.IndexToNode(index).value() << " Time("
<< solution.Min(time_var) << ", " << solution.Max(time_var)
<< ") -> ";
index = solution.Value(routing.NextVar(index));
}
auto time_var = time_dimension.CumulVar(index);
LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
<< solution.Min(time_var) << ", " << solution.Max(time_var)
<< ")";
LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
total_time += solution.Min(time_var);
}
LOG(INFO) << "Total time of all routes: " << total_time << "min";
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}
/// @brief Print the solution.
static void printSolution(
DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
// Solution cost.
logger.info("Objective : " + solution.objectiveValue());
// Inspect solution.
RoutingDimension timeDimension = routing.getMutableDimension("Time");
long totalTime = 0;
for (int i = 0; i < data.vehicleNumber; ++i) {
long index = routing.start(i);
logger.info("Route for Vehicle " + i + ":");
String route = "";
while (!routing.isEnd(index)) {
IntVar timeVar = timeDimension.cumulVar(index);
route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
+ solution.max(timeVar) + ") -> ";
index = solution.value(routing.nextVar(index));
}
IntVar timeVar = timeDimension.cumulVar(index);
route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
+ solution.max(timeVar) + ")";
logger.info(route);
logger.info("Time of the route: " + solution.min(timeVar) + "min");
totalTime += solution.min(timeVar);
}
logger.info("Total time of all routes: " + totalTime + "min");
}
/// <summary>
/// Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
in Assignment solution)
{
Console.WriteLine($"Objective {solution.ObjectiveValue()}:");
// Inspect solution.
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
long totalTime = 0;
for (int i = 0; i < data.VehicleNumber; ++i)
{
Console.WriteLine("Route for Vehicle {0}:", i);
var index = routing.Start(i);
while (routing.IsEnd(index) == false)
{
var timeVar = timeDimension.CumulVar(index);
Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
solution.Max(timeVar));
index = solution.Value(routing.NextVar(index));
}
var endTimeVar = timeDimension.CumulVar(index);
Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
solution.Max(endTimeVar));
Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
totalTime += solution.Min(endTimeVar);
}
Console.WriteLine("Total time of all routes: {0}min", totalTime);
}
该解决方案会显示车辆路线以及每个位置的解决方案窗口,如下一部分所述。
解决方案窗口
某个位置的解决方案期是指车辆必须在此期间到达以便按计划到达的时间间隔。解决方案期包含在该位置的约束时间范围内,并且通常小于该时间。
在上面的解决方案打印机函数中,解决方案窗口由 (assignment.Min(time_var), assignment.Max(time_var)
返回,其中 time_var = time_dimension.CumulVar(index)
是车辆在该位置的累计行程时间。
如果 time_var
的最小值和最大值相同,则求解窗口为单个时间点,这意味着车辆必须在抵达后立即离开该位置。另一方面,如果最小值小于最大值,车辆可以在离开前等待。
运行程序部分介绍了此示例的解决方案窗口。
解决
此示例中的主函数与 TSP 示例中的函数类似。
solution = routing.SolveWithParameters(search_parameters)
const Assignment* solution = routing.SolveWithParameters(searchParameters);
Assignment solution = routing.solveWithParameters(searchParameters);
Assignment solution = routing.SolveWithParameters(searchParameters);
运行程序
运行该程序时,它会显示以下输出:
Route for vehicle 0: 0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8) -> 16 Time(11,11) -> 0 Time(18,18) Time of the route: 18min Route for vehicle 1: 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24) Time of the route: 24min Route for vehicle 2: 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Route for vehicle 3: 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Total time of all routes: 82min
对于路线上的每个位置,Time(a,b)
是解决方案窗口:访问相应位置的车辆必须在该时间间隔内执行此操作,才能保证进度。
例如,我们来看看 0 号车辆的路线的以下部分。
0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)
在位置 9,解决方案窗口为 Time(2,3)
,这意味着车辆必须在 2 次到 3 次之间到达。请注意,求解窗口包含在问题数据中给定位置 (0, 3)
处的约束时间窗口内。解决方案窗口从时间 2 开始,因为从仓库到位置 9 需要 2 个时间单位(时间矩阵的 0、9 条目)。
为什么车辆可以在 2 点到 3 点之间随时从第 9 个地点出发?其原因在于,由于从位置 9 到位置 14 的行程时间为 3,因此,如果车辆在时间 3 之前的任何时间出发,则会在时间 6 之前到达位置 14,而这个时间太早,无法抵达。因此,车辆必须等待某处,例如驾驶员可以决定在地点 9 等待到时间 3,而不会延迟路线的完成。
您可能已经注意到,某些解决方案窗口(例如,在位置 9 和 14)的开始时间和结束时间不同,但其他解决方案窗口(例如,路线 2 和 3 上)的开始时间和结束时间相同。在前一种情况下,车辆可以等到窗口结束后再离开,而在后一种情况下,车辆必须在到达后立即离开。
将求解窗口保存到列表或数组中
TSP 部分介绍了如何将解决方案中的路由保存为列表或数组。对于 VRPTW,您还可以保存解决方案窗口。以下函数将求解窗口保存到列表 (Python) 或数组 (C++) 中。
def get_cumul_data(solution, routing, dimension):
"""Get cumulative data from a dimension and store it in an array."""
# Returns an array cumul_data whose i,j entry contains the minimum and
# maximum of CumulVar for the dimension at the jth node on route :
# - cumul_data[i][j][0] is the minimum.
# - cumul_data[i][j][1] is the maximum.
cumul_data = []
for route_nbr in range(routing.vehicles()):
route_data = []
index = routing.Start(route_nbr)
dim_var = dimension.CumulVar(index)
route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
while not routing.IsEnd(index):
index = solution.Value(routing.NextVar(index))
dim_var = dimension.CumulVar(index)
route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
cumul_data.append(route_data)
return cumul_data
std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData(
const Assignment& solution, const RoutingModel& routing,
const RoutingDimension& dimension) {
// Returns an array cumul_data, whose i, j entry is a pair containing
// the minimum and maximum of CumulVar for the dimension.:
// - cumul_data[i][j].first is the minimum.
// - cumul_data[i][j].second is the maximum.
std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data(
routing.vehicles());
for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) {
int64_t index = routing.Start(vehicle_id);
IntVar* dim_var = dimension.CumulVar(index);
cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
solution.Max(dim_var));
while (!routing.IsEnd(index)) {
index = solution.Value(routing.NextVar(index));
IntVar* dim_var = dimension.CumulVar(index);
cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
solution.Max(dim_var));
}
}
return cumul_data;
}
这些函数会保存任何维度(而不仅仅是时间)的累计数据的最小值和最大值。在当前示例中,这些值是解决方案窗口的下限和上限,传递给函数的维度是 time_dimension
。
以下函数从路线和累计数据中输出解决方案。
def print_solution(routes, cumul_data):
"""Print the solution."""
total_time = 0
route_str = ""
for i, route in enumerate(routes):
route_str += "Route " + str(i) + ":\n"
start_time = cumul_data[i][0][0]
end_time = cumul_data[i][0][1]
route_str += (
" "
+ str(route[0])
+ " Time("
+ str(start_time)
+ ", "
+ str(end_time)
+ ")"
)
for j in range(1, len(route)):
start_time = cumul_data[i][j][0]
end_time = cumul_data[i][j][1]
route_str += (
" -> "
+ str(route[j])
+ " Time("
+ str(start_time)
+ ", "
+ str(end_time)
+ ")"
)
route_str += f"\n Route time: {start_time}min\n\n"
total_time += cumul_data[i][len(route) - 1][0]
route_str += f"Total time: {total_time}min"
print(route_str)
void PrintSolution(
const std::vector<std::vector<int>> routes,
std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) {
int64_t total_time{0};
std::ostringstream route;
for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) {
route << "\nRoute " << vehicle_id << ": \n";
route << " " << routes[vehicle_id][0] << " Time("
<< cumul_data[vehicle_id][0].first << ", "
<< cumul_data[vehicle_id][0].second << ") ";
for (int j = 1; j < routes[vehicle_id].size(); ++j) {
route << "-> " << routes[vehicle_id][j] << " Time("
<< cumul_data[vehicle_id][j].first << ", "
<< cumul_data[vehicle_id][j].second << ") ";
}
route << "\n Route time: "
<< cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first
<< " minutes\n";
total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first;
}
route << "\nTotal travel time: " << total_time << " minutes";
LOG(INFO) << route.str();
}
完成计划
针对具有时间范围的车辆路线问题的完整程序如下所示。
"""Vehicles Routing Problem (VRP) with Time Windows."""
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
def create_data_model():
"""Stores the data for the problem."""
data = {}
data["time_matrix"] = [
[0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
[6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
[9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
[8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
[7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
[3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
[6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
[2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
[3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
[2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
[6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
[6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
[4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
[4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
[5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
[9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
[7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
]
data["time_windows"] = [
(0, 5), # depot
(7, 12), # 1
(10, 15), # 2
(16, 18), # 3
(10, 13), # 4
(0, 5), # 5
(5, 10), # 6
(0, 4), # 7
(5, 10), # 8
(0, 3), # 9
(10, 16), # 10
(10, 15), # 11
(0, 5), # 12
(5, 10), # 13
(7, 8), # 14
(10, 15), # 15
(11, 15), # 16
]
data["num_vehicles"] = 4
data["depot"] = 0
return data
def print_solution(data, manager, routing, solution):
"""Prints solution on console."""
print(f"Objective: {solution.ObjectiveValue()}")
time_dimension = routing.GetDimensionOrDie("Time")
total_time = 0
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
plan_output = f"Route for vehicle {vehicle_id}:\n"
while not routing.IsEnd(index):
time_var = time_dimension.CumulVar(index)
plan_output += (
f"{manager.IndexToNode(index)}"
f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
" -> "
)
index = solution.Value(routing.NextVar(index))
time_var = time_dimension.CumulVar(index)
plan_output += (
f"{manager.IndexToNode(index)}"
f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
)
plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
print(plan_output)
total_time += solution.Min(time_var)
print(f"Total time of all routes: {total_time}min")
def main():
"""Solve the VRP with time windows."""
# Instantiate the data problem.
data = create_data_model()
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(
len(data["time_matrix"]), data["num_vehicles"], data["depot"]
)
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
# Create and register a transit callback.
def time_callback(from_index, to_index):
"""Returns the travel time between the two nodes."""
# Convert from routing variable Index to time matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data["time_matrix"][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(time_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Time Windows constraint.
time = "Time"
routing.AddDimension(
transit_callback_index,
30, # allow waiting time
30, # maximum time per vehicle
False, # Don't force start cumul to zero.
time,
)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data["time_windows"]):
if location_idx == data["depot"]:
continue
index = manager.NodeToIndex(location_idx)
time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
depot_idx = data["depot"]
for vehicle_id in range(data["num_vehicles"]):
index = routing.Start(vehicle_id)
time_dimension.CumulVar(index).SetRange(
data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
)
# Instantiate route start and end times to produce feasible times.
for i in range(data["num_vehicles"]):
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.Start(i))
)
routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# Print solution on console.
if solution:
print_solution(data, manager, routing, solution)
if __name__ == "__main__":
main()
#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"
namespace operations_research {
struct DataModel {
const std::vector<std::vector<int64_t>> time_matrix{
{0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
{6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
{9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
{8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
{7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
{3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
{6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
{2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
{3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
{2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
{6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
{6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
{4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
{4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
{5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
{9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
{7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
};
const std::vector<std::pair<int64_t, int64_t>> time_windows{
{0, 5}, // depot
{7, 12}, // 1
{10, 15}, // 2
{16, 18}, // 3
{10, 13}, // 4
{0, 5}, // 5
{5, 10}, // 6
{0, 4}, // 7
{5, 10}, // 8
{0, 3}, // 9
{10, 16}, // 10
{10, 15}, // 11
{0, 5}, // 12
{5, 10}, // 13
{7, 8}, // 14
{10, 15}, // 15
{11, 15}, // 16
};
const int num_vehicles = 4;
const RoutingIndexManager::NodeIndex depot{0};
};
//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
const RoutingModel& routing, const Assignment& solution) {
const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
int64_t total_time{0};
for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
int64_t index = routing.Start(vehicle_id);
LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
std::ostringstream route;
while (!routing.IsEnd(index)) {
auto time_var = time_dimension.CumulVar(index);
route << manager.IndexToNode(index).value() << " Time("
<< solution.Min(time_var) << ", " << solution.Max(time_var)
<< ") -> ";
index = solution.Value(routing.NextVar(index));
}
auto time_var = time_dimension.CumulVar(index);
LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
<< solution.Min(time_var) << ", " << solution.Max(time_var)
<< ")";
LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
total_time += solution.Min(time_var);
}
LOG(INFO) << "Total time of all routes: " << total_time << "min";
LOG(INFO) << "";
LOG(INFO) << "Advanced usage:";
LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}
void VrpTimeWindows() {
// Instantiate the data problem.
DataModel data;
// Create Routing Index Manager
RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
data.depot);
// Create Routing Model.
RoutingModel routing(manager);
// Create and register a transit callback.
const int transit_callback_index = routing.RegisterTransitCallback(
[&data, &manager](const int64_t from_index,
const int64_t to_index) -> int64_t {
// Convert from routing variable Index to time matrix NodeIndex.
const int from_node = manager.IndexToNode(from_index).value();
const int to_node = manager.IndexToNode(to_index).value();
return data.time_matrix[from_node][to_node];
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
// Add Time constraint.
const std::string time = "Time";
routing.AddDimension(transit_callback_index, // transit callback index
int64_t{30}, // allow waiting time
int64_t{30}, // maximum time per vehicle
false, // Don't force start cumul to zero
time);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
// Add time window constraints for each location except depot.
for (int i = 1; i < data.time_windows.size(); ++i) {
const int64_t index =
manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
data.time_windows[i].second);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.num_vehicles; ++i) {
const int64_t index = routing.Start(i);
time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
data.time_windows[0].second);
}
// Instantiate route start and end times to produce feasible times.
for (int i = 0; i < data.num_vehicles; ++i) {
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.Start(i)));
routing.AddVariableMinimizedByFinalizer(
time_dimension.CumulVar(routing.End(i)));
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
FirstSolutionStrategy::PATH_CHEAPEST_ARC);
// Solve the problem.
const Assignment* solution = routing.SolveWithParameters(searchParameters);
// Print solution on console.
PrintSolution(data, manager, routing, *solution);
}
} // namespace operations_research
int main(int /*argc*/, char* /*argv*/[]) {
operations_research::VrpTimeWindows();
return EXIT_SUCCESS;
}
package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;
/** VRPTW. */
public class VrpTimeWindows {
private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName());
static class DataModel {
public final long[][] timeMatrix = {
{0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
{6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
{9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
{8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
{7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
{3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
{6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
{2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
{3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
{2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
{6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
{6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
{4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
{4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
{5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
{9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
{7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
};
public final long[][] timeWindows = {
{0, 5}, // depot
{7, 12}, // 1
{10, 15}, // 2
{16, 18}, // 3
{10, 13}, // 4
{0, 5}, // 5
{5, 10}, // 6
{0, 4}, // 7
{5, 10}, // 8
{0, 3}, // 9
{10, 16}, // 10
{10, 15}, // 11
{0, 5}, // 12
{5, 10}, // 13
{7, 8}, // 14
{10, 15}, // 15
{11, 15}, // 16
};
public final int vehicleNumber = 4;
public final int depot = 0;
}
/// @brief Print the solution.
static void printSolution(
DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
// Solution cost.
logger.info("Objective : " + solution.objectiveValue());
// Inspect solution.
RoutingDimension timeDimension = routing.getMutableDimension("Time");
long totalTime = 0;
for (int i = 0; i < data.vehicleNumber; ++i) {
long index = routing.start(i);
logger.info("Route for Vehicle " + i + ":");
String route = "";
while (!routing.isEnd(index)) {
IntVar timeVar = timeDimension.cumulVar(index);
route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
+ solution.max(timeVar) + ") -> ";
index = solution.value(routing.nextVar(index));
}
IntVar timeVar = timeDimension.cumulVar(index);
route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
+ solution.max(timeVar) + ")";
logger.info(route);
logger.info("Time of the route: " + solution.min(timeVar) + "min");
totalTime += solution.min(timeVar);
}
logger.info("Total time of all routes: " + totalTime + "min");
}
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// Instantiate the data problem.
final DataModel data = new DataModel();
// Create Routing Index Manager
RoutingIndexManager manager =
new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);
// Create Routing Model.
RoutingModel routing = new RoutingModel(manager);
// Create and register a transit callback.
final int transitCallbackIndex =
routing.registerTransitCallback((long fromIndex, long toIndex) -> {
// Convert from routing variable Index to user NodeIndex.
int fromNode = manager.indexToNode(fromIndex);
int toNode = manager.indexToNode(toIndex);
return data.timeMatrix[fromNode][toNode];
});
// Define cost of each arc.
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Add Time constraint.
routing.addDimension(transitCallbackIndex, // transit callback
30, // allow waiting time
30, // vehicle maximum capacities
false, // start cumul to zero
"Time");
RoutingDimension timeDimension = routing.getMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.timeWindows.length; ++i) {
long index = manager.nodeToIndex(i);
timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.vehicleNumber; ++i) {
long index = routing.start(i);
timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
}
// Instantiate route start and end times to produce feasible times.
for (int i = 0; i < data.vehicleNumber; ++i) {
routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters =
main.defaultRoutingSearchParameters()
.toBuilder()
.setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
.build();
// Solve the problem.
Assignment solution = routing.solveWithParameters(searchParameters);
// Print solution on console.
printSolution(data, routing, manager, solution);
}
}
// [END_program_part1]
using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
/// <summary>
/// Vehicles Routing Problem (VRP) with Time Windows.
/// </summary>
public class VrpTimeWindows
{
class DataModel
{
public long[,] TimeMatrix = {
{ 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
{ 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
{ 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
{ 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
{ 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
{ 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
{ 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
{ 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
{ 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
{ 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
{ 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
{ 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
{ 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
{ 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
{ 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
{ 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
{ 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
};
public long[,] TimeWindows = {
{ 0, 5 }, // depot
{ 7, 12 }, // 1
{ 10, 15 }, // 2
{ 16, 18 }, // 3
{ 10, 13 }, // 4
{ 0, 5 }, // 5
{ 5, 10 }, // 6
{ 0, 4 }, // 7
{ 5, 10 }, // 8
{ 0, 3 }, // 9
{ 10, 16 }, // 10
{ 10, 15 }, // 11
{ 0, 5 }, // 12
{ 5, 10 }, // 13
{ 7, 8 }, // 14
{ 10, 15 }, // 15
{ 11, 15 }, // 16
};
public int VehicleNumber = 4;
public int Depot = 0;
};
/// <summary>
/// Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
in Assignment solution)
{
Console.WriteLine($"Objective {solution.ObjectiveValue()}:");
// Inspect solution.
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
long totalTime = 0;
for (int i = 0; i < data.VehicleNumber; ++i)
{
Console.WriteLine("Route for Vehicle {0}:", i);
var index = routing.Start(i);
while (routing.IsEnd(index) == false)
{
var timeVar = timeDimension.CumulVar(index);
Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
solution.Max(timeVar));
index = solution.Value(routing.NextVar(index));
}
var endTimeVar = timeDimension.CumulVar(index);
Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
solution.Max(endTimeVar));
Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
totalTime += solution.Min(endTimeVar);
}
Console.WriteLine("Total time of all routes: {0}min", totalTime);
}
public static void Main(String[] args)
{
// Instantiate the data problem.
DataModel data = new DataModel();
// Create Routing Index Manager
RoutingIndexManager manager =
new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);
// Create Routing Model.
RoutingModel routing = new RoutingModel(manager);
// Create and register a transit callback.
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
{
// Convert from routing variable Index to time
// matrix NodeIndex.
var fromNode = manager.IndexToNode(fromIndex);
var toNode = manager.IndexToNode(toIndex);
return data.TimeMatrix[fromNode, toNode];
});
// Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
// Add Time constraint.
routing.AddDimension(transitCallbackIndex, // transit callback
30, // allow waiting time
30, // vehicle maximum capacities
false, // start cumul to zero
"Time");
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
long index = manager.NodeToIndex(i);
timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.VehicleNumber; ++i)
{
long index = routing.Start(i);
timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
}
// Instantiate route start and end times to produce feasible times.
for (int i = 0; i < data.VehicleNumber; ++i)
{
routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
}
// Setting first solution heuristic.
RoutingSearchParameters searchParameters =
operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
// Solve the problem.
Assignment solution = routing.SolveWithParameters(searchParameters);
// Print solution on console.
PrintSolution(data, routing, manager, solution);
}
}