Molti problemi di percorso dei veicoli comportano la programmazione di visite ai clienti che sono disponibili solo in periodi di tempo specifici.
Questi problemi sono noti come problemi di percorso dei veicoli con finestre temporali (VRPTW).
Esempio di VRPTW
In questa pagina illustreremo un esempio che mostra come risolvere un VRPTW. Poiché il problema riguarda finestre temporali, i dati includono una matrice temporale, che contiene i tempi di percorrenza tra i luoghi (anziché una matrice di distanza, come negli esempi precedenti).
Il diagramma seguente mostra le località da visitare in blu e il deposito in nero. Le finestre temporali sono visualizzate sopra ogni località. Consulta Coordinate di località nella sezione VRP per ulteriori dettagli su come vengono definite le località.
L'obiettivo è ridurre al minimo il tempo di percorrenza totale dei veicoli.
Risolvere l'esempio VRPTW con OR-Tools
Le seguenti sezioni descrivono come risolvere l'esempio VRPTW con OR-Tools.
Crea i dati
La seguente funzione crea i dati relativi al problema.
Python
def create_data_model(): """Stores the data for the problem.""" data = {} data["time_matrix"] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data["time_windows"] = [ (0, 5), # depot (7, 12), # 1 (10, 15), # 2 (16, 18), # 3 (10, 13), # 4 (0, 5), # 5 (5, 10), # 6 (0, 4), # 7 (5, 10), # 8 (0, 3), # 9 (10, 16), # 10 (10, 15), # 11 (0, 5), # 12 (5, 10), # 13 (7, 8), # 14 (10, 15), # 15 (11, 15), # 16 ] data["num_vehicles"] = 4 data["depot"] = 0 return dataI dati sono costituiti da:
-
data['time_matrix']
: una serie di tempi di percorrenza tra le località. Tieni presente che questo valore è diverso dagli esempi precedenti, che utilizzano una matrice di distanza. Se tutti i veicoli viaggiano alla stessa velocità, otterrai la stessa soluzione se utilizzi una matrice di distanza o una matrice temporale, poiché le distanze da percorrere sono un multiplo costante dei tempi di percorrenza. -
data['time_windows']
: un array di finestre temporali per le località, che possono essere considerate come orari richiesti per una visita. I veicoli devono visitare una località entro il rispettivo periodo di tempo. -
data['num_vehicles']
: il numero di veicoli nel parco risorse. -
data['depot']
: l'indice del deposito.
C++
struct DataModel { const std::vector<std::vector<int64_t>> time_matrix{ {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; const std::vector<std::pair<int64_t, int64_t>> time_windows{ {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; };I dati sono costituiti da:
-
time_matrix
: una serie di tempi di percorrenza tra le località. Tieni presente che questo valore è diverso dagli esempi precedenti, che utilizzano una matrice di distanza. Se tutti i veicoli viaggiano alla stessa velocità, otterrai la stessa soluzione se utilizzi una matrice di distanza o una matrice temporale, poiché le distanze da percorrere sono un multiplo costante dei tempi di percorrenza. -
time_windows
: un array di finestre temporali per le località, che possono essere considerate come orari richiesti per una visita. I veicoli devono visitare una località entro il rispettivo periodo di tempo. -
num_vehicles
: il numero di veicoli nel parco risorse. -
depot
: l'indice del deposito.
Java
static class DataModel { public final long[][] timeMatrix = { {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; public final long[][] timeWindows = { {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; public final int vehicleNumber = 4; public final int depot = 0; }I dati sono costituiti da:
-
timeMatrix
: una serie di tempi di percorrenza tra le località. Tieni presente che questo valore è diverso dagli esempi precedenti, che utilizzano una matrice di distanza. Se tutti i veicoli viaggiano alla stessa velocità, otterrai la stessa soluzione se utilizzi una matrice di distanza o una matrice temporale, poiché le distanze da percorrere sono un multiplo costante dei tempi di percorrenza. -
timeWindows
: un array di finestre temporali per le località, che possono essere considerate come orari richiesti per una visita. I veicoli devono visitare una località entro il rispettivo periodo di tempo. -
vehicleNumber
: il numero di veicoli nel parco risorse. -
depot
: l'indice del deposito.
C#
class DataModel { public long[,] TimeMatrix = { { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 }, { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 }, { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 }, { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 }, { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 }, { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 }, { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 }, { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 }, { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 }, { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 }, { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 }, { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 }, { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 }, { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 }, { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 }, { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 }, { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 }, }; public long[,] TimeWindows = { { 0, 5 }, // depot { 7, 12 }, // 1 { 10, 15 }, // 2 { 16, 18 }, // 3 { 10, 13 }, // 4 { 0, 5 }, // 5 { 5, 10 }, // 6 { 0, 4 }, // 7 { 5, 10 }, // 8 { 0, 3 }, // 9 { 10, 16 }, // 10 { 10, 15 }, // 11 { 0, 5 }, // 12 { 5, 10 }, // 13 { 7, 8 }, // 14 { 10, 15 }, // 15 { 11, 15 }, // 16 }; public int VehicleNumber = 4; public int Depot = 0; };I dati sono costituiti da:
-
TimeMatrix
: una serie di tempi di percorrenza tra le località. Tieni presente che questo valore è diverso dagli esempi precedenti, che utilizzano una matrice di distanza. Se tutti i veicoli viaggiano alla stessa velocità, otterrai la stessa soluzione se utilizzi una matrice di distanza o una matrice temporale, poiché le distanze da percorrere sono un multiplo costante dei tempi di percorrenza. -
TimeWindows
: un array di finestre temporali per le località, che possono essere considerate come orari richiesti per una visita. I veicoli devono visitare una località entro il rispettivo periodo di tempo. -
VehicleNumber
: il numero di veicoli nel parco risorse. -
Depot
: l'indice del deposito.
Callback dell'ora
La seguente funzione crea il callback di ora e lo passa al risolutore. Imposta inoltre i costi dell'arco, che definiscono il costo del viaggio, in base ai tempi di percorrenza tra le località.
Python
def time_callback(from_index, to_index): """Returns the travel time between the two nodes.""" # Convert from routing variable Index to time matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["time_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(time_callback) routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
C++
const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to time matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.time_matrix[from_node][to_node]; }); routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
Java
final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.timeMatrix[fromNode][toNode]; }); routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
C#
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to time // matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.TimeMatrix[fromNode, toNode]; }); routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
Aggiungere vincoli per le finestre temporali
Il codice seguente aggiunge vincoli di finestra temporale per tutte le località.
Python
time = "Time" routing.AddDimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle False, # Don't force start cumul to zero. time, ) time_dimension = routing.GetDimensionOrDie(time) # Add time window constraints for each location except depot. for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) # Add time window constraints for each vehicle start node. depot_idx = data["depot"] for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) time_dimension.CumulVar(index).SetRange( data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1] ) for i in range(data["num_vehicles"]): routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i)) ) routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))
C++
const std::string time = "Time"; routing.AddDimension(transit_callback_index, // transit callback index int64_t{30}, // allow waiting time int64_t{30}, // maximum time per vehicle false, // Don't force start cumul to zero time); const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time); // Add time window constraints for each location except depot. for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.num_vehicles; ++i) { const int64_t index = routing.Start(i); time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first, data.time_windows[0].second); } for (int i = 0; i < data.num_vehicles; ++i) { routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.End(i))); }
Java
routing.addDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.getMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]); } for (int i = 0; i < data.vehicleNumber; ++i) { routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i))); routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i))); }
C#
routing.AddDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.GetMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.VehicleNumber; ++i) { long index = routing.Start(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]); } for (int i = 0; i < data.VehicleNumber; ++i) { routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i))); }
Il codice crea una dimensione per il tempo di percorrenza dei veicoli, simile alle dimensioni relative alla distanza di percorrenza o alle richieste negli esempi precedenti. Le dimensioni tengono traccia delle quantità che si accumulano
sul percorso di un veicolo. Nel codice riportato sopra, time_dimension.CumulVar(index)
è il tempo di percorrenza cumulativo durante il quale un veicolo arriva nella località con il valore index
specificato.
La dimensione viene creata utilizzando il metodo AddDimension
, che ha i seguenti argomenti:
- Indice per il callback del tempo di percorrenza:
transit_callback_index
- Un limite superiore per l'allentamento (tempi di attesa nelle sedi):
30
. Anche se nell'esempio CVRP era impostato su 0, VRPTW deve consentire tempi di attesa positivi a causa dei vincoli delle finestre temporali. - Un limite superiore per il tempo totale sul percorso di ciascun veicolo:
30
- Una variabile booleana che specifica se la variabile cumulativa è impostata su zero all'inizio del percorso di ogni veicolo.
- Il nome della dimensione.
Successivamente, le righe
Python
for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
C++
for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); }
Java
for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); }
C#
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); }
richiedono che un veicolo debba visitare un luogo durante il relativo periodo di tempo.
Imposta parametri di ricerca
Il seguente codice imposta i parametri di ricerca predefiniti e un metodo euristico per trovare la prima soluzione:
Python
search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC )
C++
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC);
Java
RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build();
C#
RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
Aggiungi la stampante della soluzione
Di seguito è mostrata la funzione che mostra la soluzione.
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") time_dimension = routing.GetDimensionOrDie("Time") total_time = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" while not routing.IsEnd(index): time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})" " -> " ) index = solution.Value(routing.NextVar(index)) time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n" ) plan_output += f"Time of the route: {solution.Min(time_var)}min\n" print(plan_output) total_time += solution.Min(time_var) print(f"Total time of all routes: {total_time}min")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time"); int64_t total_time{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for vehicle " << vehicle_id << ":"; std::ostringstream route; while (!routing.IsEnd(index)) { auto time_var = time_dimension.CumulVar(index); route << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ") -> "; index = solution.Value(routing.NextVar(index)); } auto time_var = time_dimension.CumulVar(index); LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ")"; LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min"; total_time += solution.Min(time_var); } LOG(INFO) << "Total time of all routes: " << total_time << "min"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. RoutingDimension timeDimension = routing.getMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); String route = ""; while (!routing.isEnd(index)) { IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ") -> "; index = solution.value(routing.nextVar(index)); } IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ")"; logger.info(route); logger.info("Time of the route: " + solution.min(timeVar) + "min"); totalTime += solution.min(timeVar); } logger.info("Total time of all routes: " + totalTime + "min"); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. RoutingDimension timeDimension = routing.GetMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); var index = routing.Start(i); while (routing.IsEnd(index) == false) { var timeVar = timeDimension.CumulVar(index); Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar), solution.Max(timeVar)); index = solution.Value(routing.NextVar(index)); } var endTimeVar = timeDimension.CumulVar(index); Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar), solution.Max(endTimeVar)); Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar)); totalTime += solution.Min(endTimeVar); } Console.WriteLine("Total time of all routes: {0}min", totalTime); }
La soluzione mostra i percorsi dei veicoli e la finestra della soluzione per ogni località, come spiegato nella sezione successiva.
Finestre delle soluzioni
La finestra della soluzione in una località è l'intervallo di tempo durante il quale un veicolo deve arrivare, per rispettare la pianificazione.Il periodo della soluzione è contenuto, e solitamente inferiore, al periodo di tempo del vincolo della località.
Nella funzione stampante della soluzione riportata sopra, la finestra della soluzione viene restituita da
(assignment.Min(time_var), assignment.Max(time_var)
, dove
time_var = time_dimension.CumulVar(index)
è il tempo di percorrenza cumulativo del veicolo
nel luogo.
Se i valori minimo e massimo di time_var
sono uguali, la finestra della soluzione è un singolo momento nel tempo, il che significa che il veicolo deve partire dalla località non appena arriva. D'altra parte, se il minimo è inferiore al massimo, il veicolo può attendere prima di partire.
La sezione Esecuzione del programma descrive le finestre delle soluzioni per questo esempio.
Risolvi
La funzione principale per questo esempio è simile a quella dell'esempio di TSP.
Python
solution = routing.SolveWithParameters(search_parameters)
C++
const Assignment* solution = routing.SolveWithParameters(searchParameters);
Java
Assignment solution = routing.solveWithParameters(searchParameters);
C#
Assignment solution = routing.SolveWithParameters(searchParameters);
Esecuzione del programma
Quando esegui il programma, viene visualizzato il seguente output:
Route for vehicle 0: 0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8) -> 16 Time(11,11) -> 0 Time(18,18) Time of the route: 18min Route for vehicle 1: 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24) Time of the route: 24min Route for vehicle 2: 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Route for vehicle 3: 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Total time of all routes: 82min
Per ogni località su un percorso, Time(a,b)
è la
finestra della soluzione: il veicolo che visita la sede deve farlo
in quell'intervallo di tempo per rispettare la programmazione.
Ad esempio, dai un'occhiata alla seguente parte del percorso per il veicolo 0.
0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)
Nel luogo 9, il periodo della soluzione è Time(2,3)
, il che significa che il veicolo deve arrivare lì tra i tempi 2 e 3. Tieni presente che la finestra della soluzione è contenuta nella finestra temporale del vincolo in quella località, (0, 3)
, specificata nei dati del problema. La finestra della soluzione inizia al tempo 2 perché sono necessarie 2 unità di tempo (la voce 0, 9 della matrice temporale) per arrivare dal deposito alla posizione 9.
Perché il veicolo può partire alla posizione 9 in qualsiasi momento tra le 2 e le 3? Il motivo è che, poiché il tempo di percorrenza dalla posizione 9 alla posizione 14 è 3, se il veicolo parte prima delle 3, arriverà alla posizione 14 prima dell'orario 6, troppo presto per la visita. Di conseguenza, il veicolo deve attendere da qualche parte. Ad esempio, il conducente può decidere di attendere al posto 9 fino al numero 3 senza ritardare il completamento del percorso.
Avrai notato che alcune finestre di soluzione (ad es. nelle posizioni 9 e 14) hanno ore di inizio e fine diverse, mentre altre (ad es. sui percorsi 2 e 3) hanno lo stesso orario di inizio e di fine. Nel primo caso, i veicoli possono attendere fino alla fine dei finestrini prima di partire, mentre nei secondi devono partire non appena arrivano.
Salva le finestre delle soluzioni in un elenco o in un array
La sezione del TSP mostra come salvare i percorsi in una soluzione in un elenco o in un array. Per un VRPTW, puoi anche salvare le finestre della soluzione. Le funzioni riportate di seguito salvano le finestre delle soluzioni in un elenco (Python) o un array (C++).
Python
def get_cumul_data(solution, routing, dimension): """Get cumulative data from a dimension and store it in an array.""" # Returns an array cumul_data whose i,j entry contains the minimum and # maximum of CumulVar for the dimension at the jth node on route : # - cumul_data[i][j][0] is the minimum. # - cumul_data[i][j][1] is the maximum. cumul_data = [] for route_nbr in range(routing.vehicles()): route_data = [] index = routing.Start(route_nbr) dim_var = dimension.CumulVar(index) route_data.append([solution.Min(dim_var), solution.Max(dim_var)]) while not routing.IsEnd(index): index = solution.Value(routing.NextVar(index)) dim_var = dimension.CumulVar(index) route_data.append([solution.Min(dim_var), solution.Max(dim_var)]) cumul_data.append(route_data) return cumul_data
C++
std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData( const Assignment& solution, const RoutingModel& routing, const RoutingDimension& dimension) { // Returns an array cumul_data, whose i, j entry is a pair containing // the minimum and maximum of CumulVar for the dimension.: // - cumul_data[i][j].first is the minimum. // - cumul_data[i][j].second is the maximum. std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data( routing.vehicles()); for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) { int64_t index = routing.Start(vehicle_id); IntVar* dim_var = dimension.CumulVar(index); cumul_data[vehicle_id].emplace_back(solution.Min(dim_var), solution.Max(dim_var)); while (!routing.IsEnd(index)) { index = solution.Value(routing.NextVar(index)); IntVar* dim_var = dimension.CumulVar(index); cumul_data[vehicle_id].emplace_back(solution.Min(dim_var), solution.Max(dim_var)); } } return cumul_data; }
Le funzioni salvano i valori minimo e massimo dei dati cumulativi per qualsiasi dimensione (non solo il tempo).
Nell'esempio attuale, questi valori corrispondono ai limiti inferiore e superiore della finestra della soluzione e la dimensione passata alla funzione è time_dimension
.
Le seguenti funzioni stampano la soluzione dalle route e dai dati cumulativi.
Python
def print_solution(routes, cumul_data): """Print the solution.""" total_time = 0 route_str = "" for i, route in enumerate(routes): route_str += "Route " + str(i) + ":\n" start_time = cumul_data[i][0][0] end_time = cumul_data[i][0][1] route_str += ( " " + str(route[0]) + " Time(" + str(start_time) + ", " + str(end_time) + ")" ) for j in range(1, len(route)): start_time = cumul_data[i][j][0] end_time = cumul_data[i][j][1] route_str += ( " -> " + str(route[j]) + " Time(" + str(start_time) + ", " + str(end_time) + ")" ) route_str += f"\n Route time: {start_time}min\n\n" total_time += cumul_data[i][len(route) - 1][0] route_str += f"Total time: {total_time}min" print(route_str)
C++
void PrintSolution( const std::vector<std::vector<int>> routes, std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) { int64_t total_time{0}; std::ostringstream route; for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) { route << "\nRoute " << vehicle_id << ": \n"; route << " " << routes[vehicle_id][0] << " Time(" << cumul_data[vehicle_id][0].first << ", " << cumul_data[vehicle_id][0].second << ") "; for (int j = 1; j < routes[vehicle_id].size(); ++j) { route << "-> " << routes[vehicle_id][j] << " Time(" << cumul_data[vehicle_id][j].first << ", " << cumul_data[vehicle_id][j].second << ") "; } route << "\n Route time: " << cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first << " minutes\n"; total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first; } route << "\nTotal travel time: " << total_time << " minutes"; LOG(INFO) << route.str(); }
Completa i programmi
Di seguito sono riportati i programmi completi per la risoluzione del problema relativo ai percorsi dei veicoli con finestre temporali.
Python
"""Vehicles Routing Problem (VRP) with Time Windows.""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["time_matrix"] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data["time_windows"] = [ (0, 5), # depot (7, 12), # 1 (10, 15), # 2 (16, 18), # 3 (10, 13), # 4 (0, 5), # 5 (5, 10), # 6 (0, 4), # 7 (5, 10), # 8 (0, 3), # 9 (10, 16), # 10 (10, 15), # 11 (0, 5), # 12 (5, 10), # 13 (7, 8), # 14 (10, 15), # 15 (11, 15), # 16 ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") time_dimension = routing.GetDimensionOrDie("Time") total_time = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" while not routing.IsEnd(index): time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})" " -> " ) index = solution.Value(routing.NextVar(index)) time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n" ) plan_output += f"Time of the route: {solution.Min(time_var)}min\n" print(plan_output) total_time += solution.Min(time_var) print(f"Total time of all routes: {total_time}min") def main(): """Solve the VRP with time windows.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["time_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def time_callback(from_index, to_index): """Returns the travel time between the two nodes.""" # Convert from routing variable Index to time matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["time_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(time_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Time Windows constraint. time = "Time" routing.AddDimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle False, # Don't force start cumul to zero. time, ) time_dimension = routing.GetDimensionOrDie(time) # Add time window constraints for each location except depot. for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) # Add time window constraints for each vehicle start node. depot_idx = data["depot"] for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) time_dimension.CumulVar(index).SetRange( data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1] ) # Instantiate route start and end times to produce feasible times. for i in range(data["num_vehicles"]): routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i)) ) routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i))) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <string> #include <utility> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> time_matrix{ {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; const std::vector<std::pair<int64_t, int64_t>> time_windows{ {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time"); int64_t total_time{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for vehicle " << vehicle_id << ":"; std::ostringstream route; while (!routing.IsEnd(index)) { auto time_var = time_dimension.CumulVar(index); route << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ") -> "; index = solution.Value(routing.NextVar(index)); } auto time_var = time_dimension.CumulVar(index); LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ")"; LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min"; total_time += solution.Min(time_var); } LOG(INFO) << "Total time of all routes: " << total_time << "min"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpTimeWindows() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to time matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.time_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Time constraint. const std::string time = "Time"; routing.AddDimension(transit_callback_index, // transit callback index int64_t{30}, // allow waiting time int64_t{30}, // maximum time per vehicle false, // Don't force start cumul to zero time); const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time); // Add time window constraints for each location except depot. for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.num_vehicles; ++i) { const int64_t index = routing.Start(i); time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first, data.time_windows[0].second); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.num_vehicles; ++i) { routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.End(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpTimeWindows(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** VRPTW. */ public class VrpTimeWindows { private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName()); static class DataModel { public final long[][] timeMatrix = { {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; public final long[][] timeWindows = { {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. RoutingDimension timeDimension = routing.getMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); String route = ""; while (!routing.isEnd(index)) { IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ") -> "; index = solution.value(routing.nextVar(index)); } IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ")"; logger.info(route); logger.info("Time of the route: " + solution.min(timeVar) + "min"); totalTime += solution.min(timeVar); } logger.info("Total time of all routes: " + totalTime + "min"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.timeMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Time constraint. routing.addDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.getMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.vehicleNumber; ++i) { routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i))); routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } } // [END_program_part1]
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Vehicles Routing Problem (VRP) with Time Windows. /// </summary> public class VrpTimeWindows { class DataModel { public long[,] TimeMatrix = { { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 }, { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 }, { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 }, { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 }, { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 }, { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 }, { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 }, { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 }, { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 }, { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 }, { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 }, { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 }, { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 }, { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 }, { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 }, { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 }, { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 }, }; public long[,] TimeWindows = { { 0, 5 }, // depot { 7, 12 }, // 1 { 10, 15 }, // 2 { 16, 18 }, // 3 { 10, 13 }, // 4 { 0, 5 }, // 5 { 5, 10 }, // 6 { 0, 4 }, // 7 { 5, 10 }, // 8 { 0, 3 }, // 9 { 10, 16 }, // 10 { 10, 15 }, // 11 { 0, 5 }, // 12 { 5, 10 }, // 13 { 7, 8 }, // 14 { 10, 15 }, // 15 { 11, 15 }, // 16 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. RoutingDimension timeDimension = routing.GetMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); var index = routing.Start(i); while (routing.IsEnd(index) == false) { var timeVar = timeDimension.CumulVar(index); Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar), solution.Max(timeVar)); index = solution.Value(routing.NextVar(index)); } var endTimeVar = timeDimension.CumulVar(index); Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar), solution.Max(endTimeVar)); Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar)); totalTime += solution.Min(endTimeVar); } Console.WriteLine("Total time of all routes: {0}min", totalTime); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to time // matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.TimeMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Time constraint. routing.AddDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.GetMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.VehicleNumber; ++i) { long index = routing.Start(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.VehicleNumber; ++i) { routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }