vincoli di capacità

Il problema di percorso dei veicoli autorizzati (CVRP) è un VRP in cui i veicoli con capacità di carico limitata richiedono il ritiro o la consegna degli articoli in vari luoghi. Gli articoli abbiano una quantità, ad esempio il peso o il volume, e i veicoli hanno un la massima capacità che possono trasportare. Il problema è raccogliere o consegnare gli articoli al minor costo possibile, senza mai superare la capacità dei veicoli.

Nel seguente esempio, supponiamo che tutti gli articoli vengano ritirati. Il programma che risolve il problema funziona anche se tutti gli articoli vengono pubblicati: In questo caso, puoi pensare al vincolo di capacità applicato quando veicoli lasciano il deposito completamente carico. Ma i limiti di capacità vengono implementate allo stesso modo in entrambi i casi.

Esempio di CVRP

Successivamente, descriviamo un esempio di VRP con vincoli di capacità. L'esempio estende l'esempio di VRP precedente e aggiunge la i seguenti requisiti. Per ogni località esiste una domanda corrispondente la quantità dell'articolo da ritirare. Inoltre, ogni veicolo ha un limite massimo con una capacità di 15 caratteri. Non stiamo specificando unità per le richieste o la capacità.

La griglia seguente mostra le sedi da visitare in blu e la sede dell'azienda in nero. Le richieste vengono mostrate in basso a destra di ogni località. Consulta: Coordinate della posizione nel VRP per ulteriori dettagli su come vengono definite le località.

Il problema è trovare l'assegnazione di percorsi a veicoli con il traffico distanza totale e tale che la quantità totale mai trasportata da un veicolo supera la sua capacità.

Risoluzione dell'esempio di CVRP con OR-Tools

Le sezioni seguenti spiegano come risolvere l'esempio di CVRP con gli strumenti OR.

crea i dati

I dati per questo esempio includono quelli della sessione Esempio di VRP e aggiunge quanto segue richieste e capacità del veicolo:

Python

data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
data["vehicle_capacities"] = [15, 15, 15, 15]

C++

const std::vector<int64_t> demands{
    0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8,
};
const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};

Java

public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8};
public final long[] vehicleCapacities = {15, 15, 15, 15};

C#

public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 };
public long[] VehicleCapacities = { 15, 15, 15, 15 };

I nuovi elementi nei dati sono:

  • Richieste: ogni località ha una domanda corrispondente alla quantità, ad esempio il peso o il volume dell'articolo da ritirare.
  • Capacità: ogni veicolo ha una capacità, ovvero la quantità massima raggiunta dal che il veicolo può sostenere. Mentre un veicolo percorre il suo percorso, la quantità totale di gli oggetti che trasporta non possono mai superare la sua capacità.

Aggiungi il callback della distanza

Il callback di distanza, la funzione che restituisce la distanza tra qualsiasi due località, è definita come nella precedente Esempio di VRP.

Aggiungi il callback della domanda e i vincoli di capacità

Oltre al callback di distanza, il risolutore richiede anche un callback della domanda , che restituisce la domanda in ogni località e una dimensione per la capacità i vincoli. Queste vengono create nel codice seguente.

Python

def demand_callback(from_index):
    """Returns the demand of the node."""
    # Convert from routing variable Index to demands NodeIndex.
    from_node = manager.IndexToNode(from_index)
    return data["demands"][from_node]

demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
routing.AddDimensionWithVehicleCapacity(
    demand_callback_index,
    0,  # null capacity slack
    data["vehicle_capacities"],  # vehicle maximum capacities
    True,  # start cumul to zero
    "Capacity",
)

C++

const int demand_callback_index = routing.RegisterUnaryTransitCallback(
    [&data, &manager](const int64_t from_index) -> int64_t {
      // Convert from routing variable Index to demand NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      return data.demands[from_node];
    });
routing.AddDimensionWithVehicleCapacity(
    demand_callback_index,    // transit callback index
    int64_t{0},               // null capacity slack
    data.vehicle_capacities,  // vehicle maximum capacities
    true,                     // start cumul to zero
    "Capacity");

Java

final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
  // Convert from routing variable Index to user NodeIndex.
  int fromNode = manager.indexToNode(fromIndex);
  return data.demands[fromNode];
});
routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
    data.vehicleCapacities, // vehicle maximum capacities
    true, // start cumul to zero
    "Capacity");

C#

int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
                                                               {
                                                                   // Convert from routing variable Index to
                                                                   // demand NodeIndex.
                                                                   var fromNode =
                                                                       manager.IndexToNode(fromIndex);
                                                                   return data.Demands[fromNode];
                                                               });
routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
                                        data.VehicleCapacities, // vehicle maximum capacities
                                        true,                   // start cumul to zero
                                        "Capacity");

A differenza del callback di distanza, che prende una coppia di località come input, il valore il callback della domanda dipende solo dalla località (from_node) della consegna.

Poiché i vincoli di capacità riguardano il peso del carico, che trasporta, una quantità che si accumula lungo il percorso, dobbiamo crea una dimensione per le capacità, simile alla dimensione della distanza nella precedente Esempio di VRP.

In questo caso, utilizziamo AddDimensionWithVehicleCapacity che prende un vettore di capacità.

Poiché in questo esempio le capacità del veicolo sono le stesse, potresti utilizzare il valore AddDimension che utilizza un singolo limite superiore per tutte le quantità di veicoli. Ma AddDimensionWithVehicleCapacity gestisce il caso più generico in cui veicoli diversi hanno capacità diverse.

Problemi con diversi tipi e capacità di carico

Nei CVRP più complessi, ogni veicolo potrebbe trasportare diversi tipi di merci , con una capacità massima per ogni tipo. Ad esempio, un camion per la consegna di carburante potrebbe contenere diversi tipi di carburante, utilizzando più serbatoi con capacità diverse. Per gestire problemi come questi, creare un callback di capacità diverso e una dimensione per ogni tipo di carico (rendendo assicurati di assegnare loro nomi univoci).

Aggiungi la stampante della soluzione

La stampante della soluzione visualizza il percorso di ogni veicolo, insieme ai relativi carico cumulativo: la quantità totale che il veicolo trasporta in arresto sul suo route.

Python

def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data["demands"][node_index]
            plan_output += f" {node_index} Load({route_load}) -> "
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        plan_output += f"Load of the route: {route_load}\n"
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print(f"Total distance of all routes: {total_distance}m")
    print(f"Total load of all routes: {total_load}")

C++

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  int64_t total_distance = 0;
  int64_t total_load = 0;
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance = 0;
    int64_t route_load = 0;
    std::stringstream route;
    while (!routing.IsEnd(index)) {
      const int node_index = manager.IndexToNode(index).value();
      route_load += data.demands[node_index];
      route << node_index << " Load(" << route_load << ") -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    LOG(INFO) << "Load of the route: " << route_load;
    total_distance += route_distance;
    total_load += route_load;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "Total load of all routes: " << total_load;
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

/// @brief Print the solution.
static void printSolution(
    DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective: " + solution.objectiveValue());
  // Inspect solution.
  long totalDistance = 0;
  long totalLoad = 0;
  for (int i = 0; i < data.vehicleNumber; ++i) {
    long index = routing.start(i);
    logger.info("Route for Vehicle " + i + ":");
    long routeDistance = 0;
    long routeLoad = 0;
    String route = "";
    while (!routing.isEnd(index)) {
      long nodeIndex = manager.indexToNode(index);
      routeLoad += data.demands[(int) nodeIndex];
      route += nodeIndex + " Load(" + routeLoad + ") -> ";
      long previousIndex = index;
      index = solution.value(routing.nextVar(index));
      routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
    }
    route += manager.indexToNode(routing.end(i));
    logger.info(route);
    logger.info("Distance of the route: " + routeDistance + "m");
    totalDistance += routeDistance;
    totalLoad += routeLoad;
  }
  logger.info("Total distance of all routes: " + totalDistance + "m");
  logger.info("Total load of all routes: " + totalLoad);
}

C#

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                          in Assignment solution)
{
    Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

    // Inspect solution.
    long totalDistance = 0;
    long totalLoad = 0;
    for (int i = 0; i < data.VehicleNumber; ++i)
    {
        Console.WriteLine("Route for Vehicle {0}:", i);
        long routeDistance = 0;
        long routeLoad = 0;
        var index = routing.Start(i);
        while (routing.IsEnd(index) == false)
        {
            long nodeIndex = manager.IndexToNode(index);
            routeLoad += data.Demands[nodeIndex];
            Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
            var previousIndex = index;
            index = solution.Value(routing.NextVar(index));
            routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
        }
        Console.WriteLine("{0}", manager.IndexToNode((int)index));
        Console.WriteLine("Distance of the route: {0}m", routeDistance);
        totalDistance += routeDistance;
        totalLoad += routeLoad;
    }
    Console.WriteLine("Total distance of all routes: {0}m", totalDistance);
    Console.WriteLine("Total load of all routes: {0}m", totalLoad);
}

Funzione principale

La funzione principale per questo esempio è molto simile a quella per esempio del TSP, ma aggiunge anche la dimensione Richieste e capacità descritta sopra.

Esecuzione del programma

Il programma completo viene visualizzato nella sezione successiva. Quando esegui il programma, viene visualizzato il seguente output:

Objective: 6208
Route for vehicle 0:
 0 Load(0) ->  4 Load(0) ->  3 Load(4) ->  1 Load(6) ->  7 Load(7) ->  0 Load(15)
Distance of the route: 1552m
Load of the route: 15

Route for vehicle 1:
 0 Load(0) ->  14 Load(0) ->  16 Load(4) ->  10 Load(12) ->  9 Load(14) ->  0 Load(15)
Distance of the route: 1552m
Load of the route: 15

Route for vehicle 2:
 0 Load(0) ->  12 Load(0) ->  11 Load(2) ->  15 Load(3) ->  13 Load(11) ->  0 Load(15)
Distance of the route: 1552m
Load of the route: 15

Route for vehicle 3:
 0 Load(0) ->  8 Load(0) ->  2 Load(8) ->  6 Load(9) ->  5 Load(13) ->  0 Load(15)
Distance of the route: 1552m
Load of the route: 15

Total Distance of all routes: 6208m
Total Load of all routes: 60

Per ogni località lungo un percorso, l'output mostra:

  • L'indice della località.
  • Il carico totale trasportato dal veicolo quando parte dal luogo.

  • I percorsi sono mostrati di seguito.

Completa i programmi

Di seguito sono riportati i programmi completi per il problema di calcolo dei percorsi dei veicoli con capacità Capacita.

Python

"""Capacited Vehicles Routing Problem (CVRP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["demands"] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8]
    data["vehicle_capacities"] = [15, 15, 15, 15]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data["demands"][node_index]
            plan_output += f" {node_index} Load({route_load}) -> "
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f" {manager.IndexToNode(index)} Load({route_load})\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        plan_output += f"Load of the route: {route_load}\n"
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print(f"Total distance of all routes: {total_distance}m")
    print(f"Total load of all routes: {total_load}")


def main():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Capacity constraint.
    def demand_callback(from_index):
        """Returns the demand of the node."""
        # Convert from routing variable Index to demands NodeIndex.
        from_node = manager.IndexToNode(from_index)
        return data["demands"][from_node]

    demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
    routing.AddDimensionWithVehicleCapacity(
        demand_callback_index,
        0,  # null capacity slack
        data["vehicle_capacities"],  # vehicle maximum capacities
        True,  # start cumul to zero
        "Capacity",
    )

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )
    search_parameters.local_search_metaheuristic = (
        routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH
    )
    search_parameters.time_limit.FromSeconds(1)

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <vector>

#include "google/protobuf/duration.pb.h"
#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const std::vector<int64_t> demands{
      0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8,
  };
  const std::vector<int64_t> vehicle_capacities{15, 15, 15, 15};
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  int64_t total_distance = 0;
  int64_t total_load = 0;
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance = 0;
    int64_t route_load = 0;
    std::stringstream route;
    while (!routing.IsEnd(index)) {
      const int node_index = manager.IndexToNode(index).value();
      route_load += data.demands[node_index];
      route << node_index << " Load(" << route_load << ") -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    LOG(INFO) << "Load of the route: " << route_load;
    total_distance += route_distance;
    total_load += route_load;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "Total load of all routes: " << total_load;
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpCapacity() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Capacity constraint.
  const int demand_callback_index = routing.RegisterUnaryTransitCallback(
      [&data, &manager](const int64_t from_index) -> int64_t {
        // Convert from routing variable Index to demand NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        return data.demands[from_node];
      });
  routing.AddDimensionWithVehicleCapacity(
      demand_callback_index,    // transit callback index
      int64_t{0},               // null capacity slack
      data.vehicle_capacities,  // vehicle maximum capacities
      true,                     // start cumul to zero
      "Capacity");

  // Setting first solution heuristic.
  RoutingSearchParameters search_parameters = DefaultRoutingSearchParameters();
  search_parameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);
  search_parameters.set_local_search_metaheuristic(
      LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH);
  search_parameters.mutable_time_limit()->set_seconds(1);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(search_parameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpCapacity();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.LocalSearchMetaheuristic;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import com.google.protobuf.Duration;
import java.util.logging.Logger;

/** Minimal VRP. */
public final class VrpCapacity {
  private static final Logger logger = Logger.getLogger(VrpCapacity.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final long[] demands = {0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8};
    public final long[] vehicleCapacities = {15, 15, 15, 15};
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective: " + solution.objectiveValue());
    // Inspect solution.
    long totalDistance = 0;
    long totalLoad = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      long routeLoad = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        long nodeIndex = manager.indexToNode(index);
        routeLoad += data.demands[(int) nodeIndex];
        route += nodeIndex + " Load(" + routeLoad + ") -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      route += manager.indexToNode(routing.end(i));
      logger.info(route);
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
      totalLoad += routeLoad;
    }
    logger.info("Total distance of all routes: " + totalDistance + "m");
    logger.info("Total load of all routes: " + totalLoad);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Capacity constraint.
    final int demandCallbackIndex = routing.registerUnaryTransitCallback((long fromIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      return data.demands[fromNode];
    });
    routing.addDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
        data.vehicleCapacities, // vehicle maximum capacities
        true, // start cumul to zero
        "Capacity");

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .setLocalSearchMetaheuristic(LocalSearchMetaheuristic.Value.GUIDED_LOCAL_SEARCH)
            .setTimeLimit(Duration.newBuilder().setSeconds(1).build())
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }

  private VrpCapacity() {}
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;
using Google.Protobuf.WellKnownTypes; // Duration

/// <summary>
///   Minimal TSP using distance matrix.
/// </summary>
public class VrpCapacity
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
        };
        public long[] Demands = { 0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8 };
        public long[] VehicleCapacities = { 15, 15, 15, 15 };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        long totalDistance = 0;
        long totalLoad = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            long routeLoad = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                long nodeIndex = manager.IndexToNode(index);
                routeLoad += data.Demands[nodeIndex];
                Console.Write("{0} Load({1}) -> ", nodeIndex, routeLoad);
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
            totalLoad += routeLoad;
        }
        Console.WriteLine("Total distance of all routes: {0}m", totalDistance);
        Console.WriteLine("Total load of all routes: {0}m", totalLoad);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Capacity constraint.
        int demandCallbackIndex = routing.RegisterUnaryTransitCallback((long fromIndex) =>
                                                                       {
                                                                           // Convert from routing variable Index to
                                                                           // demand NodeIndex.
                                                                           var fromNode =
                                                                               manager.IndexToNode(fromIndex);
                                                                           return data.Demands[fromNode];
                                                                       });
        routing.AddDimensionWithVehicleCapacity(demandCallbackIndex, 0, // null capacity slack
                                                data.VehicleCapacities, // vehicle maximum capacities
                                                true,                   // start cumul to zero
                                                "Capacity");

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
        searchParameters.LocalSearchMetaheuristic = LocalSearchMetaheuristic.Types.Value.GuidedLocalSearch;
        searchParameters.TimeLimit = new Duration { Seconds = 1 };

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}

Esistono diversi esempi di problemi di calcolo dei percorsi dei veicoli con altri tipi di vincoli su GitHub (cerca esempi che contengono "vrp" nei nomi).

Che cosa succede se per un problema non è disponibile una soluzione?

Un problema di routing con vincoli, ad esempio un CVRP, potrebbe non avere una soluzione, ad esempio se la quantità totale degli articoli trasportate supera la capacità totale dei veicoli. Se provi a risolvere questo problema, il risolutore potrebbe eseguire una ricerca esaustiva che richiede così tanto tempo alla fine devi rinunciare e interrompere il programma.

In genere questo non è un problema. Tuttavia, ecco un paio di modi per evitare di un programma in esecuzione per molto tempo quando un problema non ha soluzione:

  • Imposta un limite di tempo nel che interrompe la ricerca anche se non è stata trovata alcuna soluzione. Tuttavia, tieni presente che se il problema ha una soluzione che richiede una ricerca lunga, il programma potrebbe raggiungere il limite di tempo prima di trovare la soluzione.
  • Imposta sanzioni per l'interruzione delle visite a determinate sedi. Ciò permette al risolutore restituisce una "soluzione" che non visita tutte le sedi nel caso in cui il problema impossibile. Consulta Penalità e perdite di visite.

In generale, può essere difficile dire se un determinato problema ha una soluzione. Anche per CVRP in cui la domanda totale non supera la capacità totale, determinando se tutti gli elementi che entrano nei veicoli è una versione del più di uno zaino.