在车辆路线规划问题 (VRP) 中,目标是为访问一组位置的多辆车辆找出最佳路线。(如果只有一辆车,这种情况就会归为销售人员出差问题。)
但是,什么是 VRP 的“最佳路线”呢?其中一个答案是总距离最短的路线。但是,如果没有其他约束条件,则最佳解决方案是仅分配一辆车来访问所有位置,并找到该车辆的最短路线。这本质上与 TSP 的问题相同。
定义最佳路线的更好方法是,尽量缩短所有车辆中最长的单个路线的长度。如果目标是尽快完成所有提交,这就是正确的定义。下面的 VRP 示例查找了以这种方式定义的最佳路线。
在后面的部分中,我们将介绍通过添加车辆约束条件来泛化 TSP 的其他方法,包括:
VRP 示例
本部分介绍了一个 VRP 示例,该示例的目标是最大限度地减少最长的单条路线。
假设一家公司需要到访客户。城市由完全相同的矩形块组成,以下为城市示意图,其中公司位置标为黑色,要游览的地点标为蓝色。
使用 OR 工具解决 VRP 示例
以下部分介绍了如何使用 OR 工具解决 VRP 示例问题。
创建数据
以下函数会针对问题创建数据。
Python
def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["num_vehicles"] = 4 data["depot"] = 0 return data
C++
struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; };
Java
static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final int vehicleNumber = 4; public final int depot = 0; }
C#
class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public int VehicleNumber = 4; public int Depot = 0; };
数据包括:
distance_matrix
:一组位置之间的距离(以米为单位)。num_vehicles
:车队中的车辆数量。depot
:仓库的索引,这是所有车辆开始和结束路线的位置。
位置坐标
为了设置该示例并计算距离矩阵,我们为城市图中显示的位置分配了以下 x
-y
坐标:
[(456, 320), # location 0 - the depot (228, 0), # location 1 (912, 0), # location 2 (0, 80), # location 3 (114, 80), # location 4 (570, 160), # location 5 (798, 160), # location 6 (342, 240), # location 7 (684, 240), # location 8 (570, 400), # location 9 (912, 400), # location 10 (114, 480), # location 11 (228, 480), # location 12 (342, 560), # location 13 (684, 560), # location 14 (0, 640), # location 15 (798, 640)] # location 16
请注意,位置坐标不包含在问题数据中:解决问题所需的只是距离矩阵,我们已经预先计算了距离矩阵。您只需要通过位置数据来识别解决方案中的位置,这些位置在上述列表中以索引 (0, 1, 2 ...) 表示。
在此例和其他示例中,显示位置坐标和城市图的主要目的是直观展示问题及其解决方案。但这对于解决 VRP 而言并非必不可少。
为方便设置该问题,位置之间的距离使用曼哈顿距离计算,其中两点之间的距离 (x1, y1) 和 (x2, y2) 定义为 |x1 - x2|2|y 的特殊原因。您可以使用任何最适合您问题的方法来计算距离。或者,您也可以使用 Google Distance Matrix API 获取世界上任何一组位置的距离矩阵。如需查看有关如何执行此操作的示例,请参阅 Distance Matrix API。
定义距离回调
与 TSP 示例一样,以下函数会创建距离回调,该回调返回位置之间的距离并将其传递给求解器。它还将弧线成本(用于定义行程费用)设置为弧线的距离。
Python
def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
C++
const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
Java
final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
C#
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
添加距离维度
要解决此 VRP 问题,您需要创建一个距离维度,用于计算每辆车沿路线行驶的累计距离。然后,您可以设置与每条路线沿途总距离的最大值成比例的费用。路线规划程序使用维度来跟踪车辆行驶路线上累积的数量。如需了解详情,请参阅维度。
以下代码使用求解器的 AddDimension
方法创建距离维度。参数 transit_callback_index
是 distance_callback 的索引。
Python
dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100)
C++
routing.AddDimension(transit_callback_index, 0, 3000, true, // start cumul to zero "Distance"); routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100);
Java
routing.addDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100);
C#
routing.AddDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100);
SetGlobalSpanCostCoefficient
方法为路线的全球跨度设置较大的系数 (100
),在本示例中,该系数是路线的距离上限。这使得全局跨度成为目标函数的主要因素,从而该程序最大限度地缩短了最长路线的长度。
添加解决方案打印机
输出解决方案的函数如下所示。
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") max_route_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) max_route_distance = max(route_distance, max_route_distance) print(f"Maximum of the route distances: {max_route_distance}m")
C++
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t max_route_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; max_route_distance = std::max(route_distance, max_route_distance); } LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); maxRouteDistance = Math.max(routeDistance, maxRouteDistance); } logger.info("Maximum of the route distances: " + maxRouteDistance + "m"); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); maxRouteDistance = Math.Max(routeDistance, maxRouteDistance); } Console.WriteLine("Maximum distance of the routes: {0}m", maxRouteDistance); }
该函数会显示车辆的路线和路线的总距离。
或者,您也可以先将路线保存到列表或数组,然后输出这些路线。
主函数
VRP 计划 main 函数中的大多数代码与上一个 TSP 示例中的代码相同。如需了解该代码的说明,请参阅 TSP 部分。新功能是上文所述的距离维度。
运行程序
下一部分介绍了完整的程序。 运行这些程序时,它们会显示以下输出:
Objective: 177500 Route for vehicle 0: 0 -> 9 -> 10 -> 2 -> 6 -> 5 -> 0 Distance of the route: 1712m Route for vehicle 1: 0 -> 16 -> 14 -> 8 -> 0 Distance of the route: 1484m Route for vehicle 2: 0 -> 7 -> 1 -> 4 -> 3 -> 0 Distance of the route: 1552m Route for vehicle 3: 0 -> 13 -> 15 -> 11 -> 12 -> 0 Distance of the route: 1552m Maximum of the route distances: 1712m
这些路由中的位置由其在位置列表中的索引表示。所有路线的起点和终点都位于仓库 (0
)。
下图显示了已分配的路线,其中位置索引已转换为对应的 x
-y
坐标。
完成计划
最大限度缩短最长单个路线的完整程序如下所示。
Python
"""Simple Vehicles Routing Problem (VRP). This is a sample using the routing library python wrapper to solve a VRP problem. A description of the problem can be found here: http://en.wikipedia.org/wiki/Vehicle_routing_problem. Distances are in meters. """ from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") max_route_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) max_route_distance = max(route_distance, max_route_distance) print(f"Maximum of the route distances: {max_route_distance}m") def main(): """Entry point of the program.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Distance constraint. dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) else: print("No solution found !") if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <sstream> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t max_route_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; max_route_distance = std::max(route_distance, max_route_distance); } LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpGlobalSpan() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Distance constraint. routing.AddDimension(transit_callback_index, 0, 3000, true, // start cumul to zero "Distance"); routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. if (solution != nullptr) { PrintSolution(data, manager, routing, *solution); } else { LOG(INFO) << "No solution found."; } } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpGlobalSpan(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** Minimal VRP.*/ public class VrpGlobalSpan { private static final Logger logger = Logger.getLogger(VrpGlobalSpan.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); maxRouteDistance = Math.max(routeDistance, maxRouteDistance); } logger.info("Maximum of the route distances: " + maxRouteDistance + "m"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.addDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Minimal TSP using distance matrix. /// </summary> public class VrpGlobalSpan { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); maxRouteDistance = Math.Max(routeDistance, maxRouteDistance); } Console.WriteLine("Maximum distance of the routes: {0}m", maxRouteDistance); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.AddDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }
使用 Google Distance Matrix API
本部分介绍了如何使用 Google Distance Matrix API 为由地址或纬度和经度定义的任何一组位置创建距离矩阵。您可以使用 API 针对许多类型的路线问题计算距离矩阵。
如需使用 API,您需要 API 密钥。您可以了解如何获取此 ID。
示例
例如,我们将演示一个 Python 程序,该程序为田纳西州孟菲斯市的一组 16 个位置创建距离矩阵。距离矩阵是一个 16 x 16 矩阵,其 i
、j
条目是位置 i
和 j
之间的距离。以下是这些营业地点的地址。
data['addresses'] = ['3610+Hacks+Cross+Rd+Memphis+TN', # depot '1921+Elvis+Presley+Blvd+Memphis+TN', '149+Union+Avenue+Memphis+TN', '1034+Audubon+Drive+Memphis+TN', '1532+Madison+Ave+Memphis+TN', '706+Union+Ave+Memphis+TN', '3641+Central+Ave+Memphis+TN', '926+E+McLemore+Ave+Memphis+TN', '4339+Park+Ave+Memphis+TN', '600+Goodwyn+St+Memphis+TN', '2000+North+Pkwy+Memphis+TN', '262+Danny+Thomas+Pl+Memphis+TN', '125+N+Front+St+Memphis+TN', '5959+Park+Ave+Memphis+TN', '814+Scott+St+Memphis+TN', '1005+Tillman+St+Memphis+TN' ]
API 请求
Distance Matrix API 请求是包含以下内容的长字符串:
- API 地址:
https://maps.googleapis.com/maps/api/distancematrix/json?
。 请求的末尾json
会请求 JSON 格式的响应。 - 请求选项。在此示例中,
units=imperial
将响应的语言设置为英语。 - 出发地址:旅行出发地。例如
&origins=3610+Hacks+Cross+Rd+Memphis+TN
。
地址中的空格会替换为+
字符。多个地址之间用|
分隔。 - 目的地地址:旅游目的地。例如
&destinations=3734+Elvis+Presley+Blvd+Memphis+TN
。 - API 密钥:请求的凭据,格式为
&key=YOUR_API_KEY
。
以下是针对上述单个出发地和单个目的地的完整请求(位于“出发地地址”和“目的地地址”后面)。
https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins=3610+Hacks+Cross+Rd+Memphis+TN&destinations=3734+Elvis+Presley+Blvd+Memphis+TN&key=YOUR_API_KEY
以下是对请求的响应。
{ "destination_addresses" : [ "1921 Elvis Presley Blvd, Memphis, TN 38106, USA" ], "origin_addresses" : [ "3610 Hacks Cross Rd, Memphis, TN 38125, USA" ], "rows" : [ { "elements" : [ { "distance" : { "text" : "15.2 mi", "value" : 24392 }, "duration" : { "text" : "21 mins", "value" : 1264 }, "status" : "OK" } ] } ], "status" : "OK" }
响应包含两个地址之间的行程距离(以英里和米为单位)和行程时长(以分钟和秒为单位)。
如需详细了解请求和响应,请参阅 Distance Matrix API 文档。
计算距离矩阵
为了计算距离矩阵,我们需要发送一个请求,其中包含全部 16 个地址,分别作为出发地地址和目的地地址。不过,我们不能这样做,因为这需要 16x16=256
出发地-目的地对,而 API 的限制为每个请求 100 个这样的出发地对。因此,我们需要发出多个请求
由于矩阵的每一行包含 16 个条目,因此我们最多可以为每个请求计算 6 行(需要 6x16=96
对)。我们可以通过三个请求计算整个矩阵,每个请求返回 6 行、6 行和 4 行。
以下代码按如下方式计算距离矩阵:
- 将这 16 个地址分为 2 组,每组 6 个地址,一组包含 4 个地址。
- 对于每个组,针对组中的出发地地址及所有目的地地址构建并发送请求。请参阅构建和发送请求。
- 使用响应构建矩阵的相应行,并串联这些行(这些行只是 Python 列表)。请参阅构建距离矩阵的行。
def create_distance_matrix(data): addresses = data["addresses"] API_key = data["API_key"] # Distance Matrix API only accepts 100 elements per request, so get rows in multiple requests. max_elements = 100 num_addresses = len(addresses) # 16 in this example. # Maximum number of rows that can be computed per request (6 in this example). max_rows = max_elements // num_addresses # num_addresses = q * max_rows + r (q = 2 and r = 4 in this example). q, r = divmod(num_addresses, max_rows) dest_addresses = addresses distance_matrix = [] # Send q requests, returning max_rows rows per request. for i in range(q): origin_addresses = addresses[i * max_rows: (i + 1) * max_rows] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) # Get the remaining remaining r rows, if necessary. if r > 0: origin_addresses = addresses[q * max_rows: q * max_rows + r] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) return distance_matrix
构建并发送请求
以下函数为一组指定的出发地和目的地地址构建并发送请求。
def send_request(origin_addresses, dest_addresses, API_key): """ Build and send request for the given origin and destination addresses.""" def build_address_str(addresses): # Build a pipe-separated string of addresses address_str = '' for i in range(len(addresses) - 1): address_str += addresses[i] + '|' address_str += addresses[-1] return address_str request = 'https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial' origin_address_str = build_address_str(origin_addresses) dest_address_str = build_address_str(dest_addresses) request = request + '&origins=' + origin_address_str + '&destinations=' + \ dest_address_str + '&key=' + API_key jsonResult = urllib.urlopen(request).read() response = json.loads(jsonResult) return response
子函数 build_address_string
会串联以竖线字符 |
分隔的地址。
函数中的其余代码组合上述请求的各个部分,然后发送请求。线条
response = json.loads(jsonResult)
将原始结果转换为 Python 对象。
构建矩阵的行
以下函数使用 send_request
函数返回的响应构建距离矩阵的行。
def build_distance_matrix(response): distance_matrix = [] for row in response['rows']: row_list = [row['elements'][j]['distance']['value'] for j in range(len(row['elements']))] distance_matrix.append(row_list) return distance_matrix
线条
row_list = [row['elements'][j]['distance']['value'] for j in range(len(row['elements']))]
提取响应行中位置之间的距离。您可以将这种情况与单个出发地和目的地的部分响应(由 json.loads
转换)进行比较,如下所示。
{u'status': u'OK', u'rows': [{u'elements': [{u'duration': {u'text': u'21 mins', u'value': 1264}, u'distance': {u'text': u'15.2 mi', u'value': 24392}, u'status': u'OK'}]}], u'origin_addresses': [u'3610 Hacks Cross Rd, Memphis, TN 38125, USA'], u'destination_addresses': [u'1921 Elvis Presley Blvd, Memphis, TN 38106, USA']}
如果要创建一个时间矩阵(包含位置之间的行程时间),请将函数 build_distance_matrix
中的 'distance'
替换为 'duration'
。
运行程序
main 函数中的以下代码用于运行程序
def main(): """Entry point of the program""" # Create the data. data = create_data() addresses = data['addresses'] API_key = data['API_key'] distance_matrix = create_distance_matrix(data) print(distance_matrix)
运行该程序时,它会输出距离矩阵,如下所示。
[[0, 24392, 33384, 14963, 31992, 32054, 20866, 28427, 15278, 21439, 28765, 34618, 35177, 10612, 26762, 27278], [25244, 0, 8314, 10784, 6922, 6984, 10678, 3270, 10707, 7873, 11350, 9548, 10107, 19176, 12139, 13609], [34062, 8491, 0, 14086, 4086, 1363, 11008, 4239, 13802, 9627, 7179, 1744, 925, 27994, 9730, 10531], [15494, 13289, 13938, 0, 11065, 12608, 4046, 10970, 581, 5226, 10788, 15500, 16059, 5797, 9180, 9450], [33351, 7780, 4096, 11348, 0, 2765, 7364, 4464, 11064, 6736, 3619, 4927, 5485, 20823, 6170, 7076], [32731, 7160, 1363, 12755, 2755, 0, 9677, 3703, 12471, 8297, 7265, 2279, 2096, 26664, 9816, 9554], [19636, 10678, 11017, 4038, 7398, 9687, 0, 9159, 3754, 2809, 7099, 10740, 11253, 8970, 5491, 5928], [29097, 3270, 4257, 11458, 4350, 3711, 9159, 0, 11174, 6354, 10160, 5178, 5258, 23029, 10620, 12419], [15809, 10707, 13654, 581, 10781, 12324, 3763, 10687, 0, 4943, 10504, 15216, 15775, 5216, 8896, 9166], [21831, 7873, 9406, 5226, 6282, 8075, 2809, 6354, 4943, 0, 6967, 10968, 11526, 10159, 5119, 6383], [28822, 11931, 6831, 11802, 3305, 6043, 7167, 10627, 11518, 7159, 0, 5361, 6422, 18351, 3267, 4068], [35116, 9545, 1771, 15206, 4648, 2518, 10967, 5382, 14922, 10747, 5909, 0, 1342, 29094, 8460, 9260], [36058, 10487, 927, 16148, 5590, 2211, 11420, 9183, 15864, 11689, 6734, 1392, 0, 30036, 9285, 10086], [11388, 19845, 28838, 5797, 20972, 27507, 8979, 23880, 5216, 10159, 18622, 29331, 29890, 0, 16618, 17135], [27151, 11444, 9719, 10131, 6193, 8945, 5913, 10421, 9847, 5374, 3335, 8249, 9309, 16680, 0, 1264], [27191, 14469, 10310, 9394, 7093, 9772, 5879, 13164, 9110, 6422, 3933, 8840, 9901, 16720, 1288, 0]]
行程时间矩阵
如上文所述,您希望创建一个位置之间的行程时间矩阵(而不是距离),只需在函数 build_distance_matrix
中将 'distance'
替换为 'duration'
即可。运行包含更改后的程序时,系统会显示以下行程时间矩阵:
[[0, 1232, 1599, 964, 1488, 1441, 1291, 1323, 978, 1228, 1493, 1617, 1570, 765, 1272, 1359], [1333, 0, 653, 922, 542, 495, 864, 297, 917, 622, 783, 671, 624, 1059, 985, 904], [1669, 643, 0, 1291, 447, 161, 1021, 461, 1258, 862, 715, 419, 198, 1395, 855, 904], [1062, 862, 1262, 0, 946, 1104, 360, 926, 61, 482, 995, 1237, 1190, 589, 761, 839], [1626, 600, 475, 1008, 0, 317, 688, 505, 976, 630, 446, 475, 428, 1271, 587, 648], [1537, 511, 166, 1158, 314, 0, 889, 402, 1125, 730, 697, 430, 313, 1262, 837, 770], [1388, 891, 1022, 374, 668, 863, 0, 731, 341, 259, 731, 1110, 1091, 869, 496, 570], [1407, 303, 489, 934, 492, 410, 725, 0, 901, 482, 692, 580, 587, 1132, 845, 814], [1060, 914, 1215, 55, 899, 1057, 314, 880, 0, 435, 949, 1190, 1144, 528, 714, 792], [1314, 651, 855, 475, 605, 696, 260, 491, 443, 0, 700, 830, 783, 970, 489, 596], [1530, 801, 697, 990, 427, 625, 709, 721, 957, 663, 0, 542, 634, 1084, 338, 387], [1704, 678, 370, 1355, 508, 430, 1074, 598, 1322, 866, 564, 0, 297, 1405, 703, 752], [1612, 586, 215, 1201, 416, 359, 1070, 506, 1169, 773, 639, 313, 0, 1312, 778, 827], [861, 1074, 1441, 610, 1337, 1282, 869, 1164, 555, 990, 1157, 1433, 1386, 0, 936, 1022], [1375, 1045, 899, 795, 629, 825, 588, 901, 762, 549, 408, 744, 836, 929, 0, 107], [1428, 947, 957, 885, 692, 750, 599, 867, 852, 637, 362, 803, 894, 982, 111, 0]]
在 VRP 计划中使用距离矩阵
如需了解如何在 VRP 计划中使用上面显示的距离矩阵,请将上一个 VRP 示例中的距离矩阵替换为上面的距离矩阵。此外,将距离维度中 maximum_distance
参数的值更改为 70000
。运行修改后的程序时,它会返回以下输出。
Route for vehicle 0: 0 -> 1 -> 7 -> 5 -> 4 -> 8 -> 0 Distance of route: 61001m Route for vehicle 1: 0 -> 0 Distance of route: 0m Route for vehicle 2: 0 -> 3 -> 2 -> 12 -> 11 -> 6 -> 0 Distance of route: 61821m Route for vehicle 3: 0 -> 13 -> 9 -> 10 -> 14 -> 15 -> 0 Distance of route: 59460m Total distance of all routes: 182282m
整个计划
整个程序如下所示。
import requests import json import urllib def create_data(): """Creates the data.""" data = {} data['API_key'] = 'YOUR_API_KEY' data['addresses'] = ['3610+Hacks+Cross+Rd+Memphis+TN', # depot '1921+Elvis+Presley+Blvd+Memphis+TN', '149+Union+Avenue+Memphis+TN', '1034+Audubon+Drive+Memphis+TN', '1532+Madison+Ave+Memphis+TN', '706+Union+Ave+Memphis+TN', '3641+Central+Ave+Memphis+TN', '926+E+McLemore+Ave+Memphis+TN', '4339+Park+Ave+Memphis+TN', '600+Goodwyn+St+Memphis+TN', '2000+North+Pkwy+Memphis+TN', '262+Danny+Thomas+Pl+Memphis+TN', '125+N+Front+St+Memphis+TN', '5959+Park+Ave+Memphis+TN', '814+Scott+St+Memphis+TN', '1005+Tillman+St+Memphis+TN' ] return data def create_distance_matrix(data): addresses = data["addresses"] API_key = data["API_key"] # Distance Matrix API only accepts 100 elements per request, so get rows in multiple requests. max_elements = 100 num_addresses = len(addresses) # 16 in this example. # Maximum number of rows that can be computed per request (6 in this example). max_rows = max_elements // num_addresses # num_addresses = q * max_rows + r (q = 2 and r = 4 in this example). q, r = divmod(num_addresses, max_rows) dest_addresses = addresses distance_matrix = [] # Send q requests, returning max_rows rows per request. for i in range(q): origin_addresses = addresses[i * max_rows: (i + 1) * max_rows] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) # Get the remaining remaining r rows, if necessary. if r > 0: origin_addresses = addresses[q * max_rows: q * max_rows + r] response = send_request(origin_addresses, dest_addresses, API_key) distance_matrix += build_distance_matrix(response) return distance_matrix def send_request(origin_addresses, dest_addresses, API_key): """ Build and send request for the given origin and destination addresses.""" def build_address_str(addresses): # Build a pipe-separated string of addresses address_str = '' for i in range(len(addresses) - 1): address_str += addresses[i] + '|' address_str += addresses[-1] return address_str request = 'https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial' origin_address_str = build_address_str(origin_addresses) dest_address_str = build_address_str(dest_addresses) request = request + '&origins=' + origin_address_str + '&destinations=' + \ dest_address_str + '&key=' + API_key jsonResult = urllib.urlopen(request).read() response = json.loads(jsonResult) return response def build_distance_matrix(response): distance_matrix = [] for row in response['rows']: row_list = [row['elements'][j]['distance']['value'] for j in range(len(row['elements']))] distance_matrix.append(row_list) return distance_matrix ######## # Main # ######## def main(): """Entry point of the program""" # Create the data. data = create_data() addresses = data['addresses'] API_key = data['API_key'] distance_matrix = create_distance_matrix(data) print(distance_matrix) if __name__ == '__main__': main()