以下部分介绍了如何执行与解题相关的一些常见任务 车辆路线问题
搜索限制
位置较多的车辆路线问题可能需要很长时间才能解决。对于 那么最好设置搜索限制, 在指定时间长度或返回的解数后搜索。
时间限制
以下示例展示了如何将搜索的时间限制设置为 30 秒。
Python
search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.time_limit.seconds = 30
C++
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.mutable_time_limit()->set_seconds(30);
Java
在程序的开头添加以下 `import`:import com.google.protobuf.Duration;
RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setTimeLimit(Duration.newBuilder().setSeconds(30).build()) .build();
C#
在程序的开头添加以下行:using Google.Protobuf.WellKnownTypes; // Duration
RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.TimeLimit = new Duration { Seconds = 10 };
请参阅 更改广告系列的搜索策略 用于设置时间限制的示例
解决方案限制
以下示例展示了如何将一次搜索的解法数量上限设置为 100。
Python
search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.solution_limit = 100
C++
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_solution_limit(100);
Java
RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setSolutionLimit(100) .build();
C#
RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.SolutionLimit(100);
设置搜索的初始路由
对于某些问题,您可能需要为 VRP 指定一组初始路由, 而不是让求解器找到初始解,例如 您已经找到了解决问题的好办法,并想把它当作 是解决已修正问题的起点。
如需创建初始路由,请执行以下步骤:
- 定义包含初始路由的数组。
- 使用
ReadAssignmentFromRoutes
方法创建初始解决方案。
以下代码定义了数据中的初始路由。
Python
data["initial_routes"] = [ # fmt: off [8, 16, 14, 13, 12, 11], [3, 4, 9, 10], [15, 1], [7, 5, 2, 6], # fmt: on ]
C++
const std::vector<std::vector<int64_t>> initial_routes{ {8, 16, 14, 13, 12, 11}, {3, 4, 9, 10}, {15, 1}, {7, 5, 2, 6}, };
Java
public final long[][] initialRoutes = { {8, 16, 14, 13, 12, 11}, {3, 4, 9, 10}, {15, 1}, {7, 5, 2, 6}, };
C#
public long[][] InitialRoutes = { new long[] { 8, 16, 14, 13, 12, 11 }, new long[] { 3, 4, 9, 10 }, new long[] { 15, 1 }, new long[] { 7, 5, 2, 6 }, };
以下代码根据路由创建初始解决方案,然后 从初始解决方案开始执行搜索。
该程序会显示初始解以及通过搜索找到的解。
Python
initial_solution = routing.ReadAssignmentFromRoutes(data["initial_routes"], True) print("Initial solution:") print_solution(data, manager, routing, initial_solution)
C++
const Assignment* initial_solution = routing.ReadAssignmentFromRoutes(data.initial_routes, true); // Print initial solution on console. LOG(INFO) << "Initial solution: "; PrintSolution(data, manager, routing, *initial_solution);
Java
Assignment initialSolution = routing.readAssignmentFromRoutes(data.initialRoutes, true); logger.info("Initial solution:"); printSolution(data, routing, manager, initialSolution);
C#
Assignment initialSolution = routing.ReadAssignmentFromRoutes(data.InitialRoutes, true); // Print initial solution on console. Console.WriteLine("Initial solution:"); PrintSolution(data, routing, manager, initialSolution);
将此代码添加到上一个 VRP 计划并运行该程序后, 将显示以下输出:
Initial solution: Route for vehicle 0: 0 -> 8 -> 16 -> 14 -> 13 -> 12 -> 11 -> 0 Distance of the route: 2168m Route for vehicle 1: 0 -> 3 -> 4 -> 9 -> 10 -> 0 Distance of the route: 2464m Route for vehicle 2: 0 -> 15 -> 1 -> 0 Distance of the route: 2192m Route for vehicle 3: 0 -> 7 -> 5 -> 2 -> 6 -> 0 Distance of the route: 1780m Maximum of the route distances: 2464m Solution after search: Route for vehicle 0: 0 -> 9 -> 10 -> 16 -> 14 -> 0 Distance of the route: 1552m Route for vehicle 1: 0 -> 12 -> 11 -> 15 -> 13 -> 0 Distance of the route: 1552 Route for vehicle 2: 0 -> 3 -> 4 -> 1 -> 7 -> 0 Distance of the route: 1552 Route for vehicle 3: 0 -> 5 -> 2 -> 6 -> 8 -> 0 Distance of the route: 1552 Maximum of the route distances: 1552
以下是设置初始路由的完整程序。
Python
"""Vehicles Routing Problem (VRP).""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["initial_routes"] = [ # fmt: off [8, 16, 14, 13, 12, 11], [3, 4, 9, 10], [15, 1], [7, 5, 2, 6], # fmt: on ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") max_route_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) max_route_distance = max(route_distance, max_route_distance) print(f"Maximum of the route distances: {max_route_distance}m") def main(): """Solve the CVRP problem.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Distance constraint. dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100) # Close model with the custom search parameters. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) search_parameters.local_search_metaheuristic = ( routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH ) search_parameters.time_limit.FromSeconds(5) # When an initial solution is given for search, the model will be closed with # the default search parameters unless it is explicitly closed with the custom # search parameters. routing.CloseModelWithParameters(search_parameters) # Get initial solution from routes after closing the model. initial_solution = routing.ReadAssignmentFromRoutes(data["initial_routes"], True) print("Initial solution:") print_solution(data, manager, routing, initial_solution) # Solve the problem. solution = routing.SolveFromAssignmentWithParameters( initial_solution, search_parameters ) # Print solution on console. if solution: print("Solution after search:") print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <cstdlib> #include <sstream> #include <vector> #include "google/protobuf/duration.pb.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h" #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const std::vector<std::vector<int64_t>> initial_routes{ {8, 16, 14, 13, 12, 11}, {3, 4, 9, 10}, {15, 1}, {7, 5, 2, 6}, }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { LOG(INFO) << "Objective: " << solution.ObjectiveValue(); int64_t max_route_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; max_route_distance = std::max(route_distance, max_route_distance); } LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpInitialRoutes() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Distance constraint. routing.AddDimension(transit_callback_index, 0, 3000, true, // start cumul to zero "Distance"); routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100); // Close model with the custom search parameters RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); searchParameters.set_local_search_metaheuristic( LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH); searchParameters.mutable_time_limit()->set_seconds(5); // When an initial solution is given for search, the model will be closed with // the default search parameters unless it is explicitly closed with the // custom search parameters. routing.CloseModelWithParameters(searchParameters); // Get initial solution from routes after closing the model. const Assignment* initial_solution = routing.ReadAssignmentFromRoutes(data.initial_routes, true); // Print initial solution on console. LOG(INFO) << "Initial solution: "; PrintSolution(data, manager, routing, *initial_solution); // Solve from initial solution. const Assignment* solution = routing.SolveFromAssignmentWithParameters( initial_solution, searchParameters); // Print solution on console. LOG(INFO) << ""; LOG(INFO) << "Solution from search: "; PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpInitialRoutes(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** Minimal VRP. */ public class VrpInitialRoutes { private static final Logger logger = Logger.getLogger(VrpInitialRoutes.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final long[][] initialRoutes = { {8, 16, 14, 13, 12, 11}, {3, 4, 9, 10}, {15, 1}, {7, 5, 2, 6}, }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); maxRouteDistance = Math.max(routeDistance, maxRouteDistance); } logger.info("Maximum of the route distances: " + maxRouteDistance + "m"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.addDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100); Assignment initialSolution = routing.readAssignmentFromRoutes(data.initialRoutes, true); logger.info("Initial solution:"); printSolution(data, routing, manager, initialSolution); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters(); // Solve the problem. Assignment solution = routing.solveFromAssignmentWithParameters( initialSolution, searchParameters); // Print solution on console. logger.info("Solution after search:"); printSolution(data, routing, manager, solution); } }
C#
// Copyright 2010-2024 Google LLC // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// VRP with initial routes. /// </summary> public class InitialRoutes { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }, }; public long[][] InitialRoutes = { new long[] { 8, 16, 14, 13, 12, 11 }, new long[] { 3, 4, 9, 10 }, new long[] { 15, 1 }, new long[] { 7, 5, 2, 6 }, }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}", routeDistance); maxRouteDistance = Math.Max(routeDistance, maxRouteDistance); } Console.WriteLine("Maximum distance of the routes: {0}", maxRouteDistance); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.AddDimension(transitCallbackIndex, 0, 3000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100); // Get initial solution from routes. Assignment initialSolution = routing.ReadAssignmentFromRoutes(data.InitialRoutes, true); // Print initial solution on console. Console.WriteLine("Initial solution:"); PrintSolution(data, routing, manager, initialSolution); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); // Solve the problem. Assignment solution = routing.SolveFromAssignmentWithParameters( initialSolution, searchParameters); // Print solution on console. Console.WriteLine("Solution after search:"); PrintSolution(data, routing, manager, solution); } }
设置路线的起点和终点位置
到目前为止,我们假设所有车辆的起点和终点都在同一个位置, 您还可以在以下位置为每辆车设置不同的起点和终点位置: 问题。 为此,请传递两个矢量,分别包含起点和终点的索引 作为输入提供给 RoutingModel 方法。下面介绍如何在 程序的数据部分:
Python
data["starts"] = [1, 2, 15, 16] data["ends"] = [0, 0, 0, 0]
C++
const std::vector<RoutingIndexManager::NodeIndex> starts{ RoutingIndexManager::NodeIndex{1}, RoutingIndexManager::NodeIndex{2}, RoutingIndexManager::NodeIndex{15}, RoutingIndexManager::NodeIndex{16}, }; const std::vector<RoutingIndexManager::NodeIndex> ends{ RoutingIndexManager::NodeIndex{0}, RoutingIndexManager::NodeIndex{0}, RoutingIndexManager::NodeIndex{0}, RoutingIndexManager::NodeIndex{0}, };
Java
public final int[] starts = {1, 2, 15, 16}; public final int[] ends = {0, 0, 0, 0};
C#
public int[] Starts = { 1, 2, 15, 16 }; public int[] Ends = { 0, 0, 0, 0 };
以下是以这种方式设置起点和终点位置的完整程序。
Python
"""Simple Vehicles Routing Problem.""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["distance_matrix"] = [ # fmt: off [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0], # fmt: on ] data["num_vehicles"] = 4 data["starts"] = [1, 2, 15, 16] data["ends"] = [0, 0, 0, 0] return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") max_route_distance = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" route_distance = 0 while not routing.IsEnd(index): plan_output += f" {manager.IndexToNode(index)} -> " previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle( previous_index, index, vehicle_id ) plan_output += f"{manager.IndexToNode(index)}\n" plan_output += f"Distance of the route: {route_distance}m\n" print(plan_output) max_route_distance = max(route_distance, max_route_distance) print(f"Maximum of the route distances: {max_route_distance}m") def main(): """Entry point of the program.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["distance_matrix"]), data["num_vehicles"], data["starts"], data["ends"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["distance_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Distance constraint. dimension_name = "Distance" routing.AddDimension( transit_callback_index, 0, # no slack 2000, # vehicle maximum travel distance True, # start cumul to zero dimension_name, ) distance_dimension = routing.GetDimensionOrDie(dimension_name) distance_dimension.SetGlobalSpanCostCoefficient(100) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <algorithm> #include <cstdint> #include <sstream> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> distance_matrix{ {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; const int num_vehicles = 4; const std::vector<RoutingIndexManager::NodeIndex> starts{ RoutingIndexManager::NodeIndex{1}, RoutingIndexManager::NodeIndex{2}, RoutingIndexManager::NodeIndex{15}, RoutingIndexManager::NodeIndex{16}, }; const std::vector<RoutingIndexManager::NodeIndex> ends{ RoutingIndexManager::NodeIndex{0}, RoutingIndexManager::NodeIndex{0}, RoutingIndexManager::NodeIndex{0}, RoutingIndexManager::NodeIndex{0}, }; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { int64_t max_route_distance{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for Vehicle " << vehicle_id << ":"; int64_t route_distance{0}; std::stringstream route; while (!routing.IsEnd(index)) { route << manager.IndexToNode(index).value() << " -> "; const int64_t previous_index = index; index = solution.Value(routing.NextVar(index)); route_distance += routing.GetArcCostForVehicle(previous_index, index, int64_t{vehicle_id}); } LOG(INFO) << route.str() << manager.IndexToNode(index).value(); LOG(INFO) << "Distance of the route: " << route_distance << "m"; max_route_distance = std::max(route_distance, max_route_distance); } LOG(INFO) << "Maximum of the route distances: " << max_route_distance << "m"; LOG(INFO) << ""; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpStartsEnds() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles, data.starts, data.ends); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to distance matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.distance_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Distance constraint. routing.AddDimension(transit_callback_index, 0, 2000, /*fix_start_cumul_to_zero=*/true, "Distance"); routing.GetMutableDimension("Distance")->SetGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpStartsEnds(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** Minimal VRP.*/ public class VrpStartsEnds { private static final Logger logger = Logger.getLogger(VrpStartsEnds.class.getName()); static class DataModel { public final long[][] distanceMatrix = { {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662}, {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210}, {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754}, {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358}, {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244}, {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708}, {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480}, {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856}, {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514}, {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468}, {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354}, {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844}, {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730}, {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536}, {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194}, {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798}, {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0}, }; public final int vehicleNumber = 4; public final int[] starts = {1, 2, 15, 16}; public final int[] ends = {0, 0, 0, 0}; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); long routeDistance = 0; String route = ""; while (!routing.isEnd(index)) { route += manager.indexToNode(index) + " -> "; long previousIndex = index; index = solution.value(routing.nextVar(index)); routeDistance += routing.getArcCostForVehicle(previousIndex, index, i); } logger.info(route + manager.indexToNode(index)); logger.info("Distance of the route: " + routeDistance + "m"); maxRouteDistance = Math.max(routeDistance, maxRouteDistance); } logger.info("Maximum of the route distances: " + maxRouteDistance + "m"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager( data.distanceMatrix.length, data.vehicleNumber, data.starts, data.ends); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.distanceMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.addDimension(transitCallbackIndex, 0, 2000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.getMutableDimension("Distance"); distanceDimension.setGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } }
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Minimal TSP using distance matrix. /// </summary> public class VrpStartsEnds { class DataModel { public long[,] DistanceMatrix = { { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 }, { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 }, { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 }, { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 }, { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 }, { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 }, { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 }, { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 }, { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 }, { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 }, { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 }, { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 }, { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 }, { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 }, { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 }, { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 }, { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 } }; public int VehicleNumber = 4; public int[] Starts = { 1, 2, 15, 16 }; public int[] Ends = { 0, 0, 0, 0 }; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. long maxRouteDistance = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); long routeDistance = 0; var index = routing.Start(i); while (routing.IsEnd(index) == false) { Console.Write("{0} -> ", manager.IndexToNode((int)index)); var previousIndex = index; index = solution.Value(routing.NextVar(index)); routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0); } Console.WriteLine("{0}", manager.IndexToNode((int)index)); Console.WriteLine("Distance of the route: {0}m", routeDistance); maxRouteDistance = Math.Max(routeDistance, maxRouteDistance); } Console.WriteLine("Maximum distance of the routes: {0}m", maxRouteDistance); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Starts, data.Ends); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to // distance matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.DistanceMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Distance constraint. routing.AddDimension(transitCallbackIndex, 0, 2000, true, // start cumul to zero "Distance"); RoutingDimension distanceDimension = routing.GetMutableDimension("Distance"); distanceDimension.SetGlobalSpanCostCoefficient(100); // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }
运行程序时,您将获得以下输出,其中路由开始 并在指定位置结束:
Route for vehicle 0: 1 -> 4 -> 3 -> 7 -> 0 Distance of the route: 1004m Route for vehicle 1: 2 -> 6 -> 8 -> 5 -> 0 Distance of the route: 936m Route for vehicle 2: 15 -> 11 -> 12 -> 13 -> 0 Distance of the route: 936m Route for vehicle 3: 16 -> 14 -> 10 -> 9 -> 0 Distance of the route: 1118m Total distance of all routes: 3994m
总距离比上一个示例短, 无需在仓库中开始或结束。
允许任意起始位置和结束位置
在其他版本的车辆路线问题中,车辆可以启动 并在任意位置结束。要以这种方式设置问题,只需修改 距离矩阵,使从库到任何其他位置的距离为 0, 方法是将矩阵的第一行和第一列设置为全零。 这会将仓库变成一个虚拟位置,对最佳路线没有影响。
在此示例中,距离矩阵 VRP 示例经过修改,使 从 depot 到所有其他节点的距离为 0。
data['distance_matrix'] = [ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 ], [ 0, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 ], [ 0, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 ], [ 0, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 ], [ 0, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 ], [ 0, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 ], [ 0, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 ], [ 0, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 0, 1084, 514 ], [ 0, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 0, 810, 468 ], [ 0, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 ], [ 0, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 ], [ 0, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 ], [ 0, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 ], [ 0, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 ], [ 0, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 ], [ 0, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 ], ]
如果您通过以下命令运行 VRP 计划, 修改后的距离矩阵(并修改解决方案打印机,以省略仓库) ,该程序会显示以下路线:
Route for vehicle 0: 5 -> 8 -> 6 -> 2 Distance of the route: 662m Route for vehicle 1: 7 -> 1 -> 4 -> 3 Distance of the route: 662m Route for vehicle 2: 16 -> 14 -> 13 -> 15 Distance of the route: 958m Route for vehicle 3: 10 -> 9 -> 12 -> 11 Distance of the route: 878m Maximum of the route distances: 958m