本部分介绍了原始约束编程求解器,它已被高级的 CP-SAT 求解器取代。
以下部分介绍了如何求解 CP-SAT 部分中所述的示例,这次使用原始 CP 求解器。如果您坚持要使用原始 CP 求解器,可以浏览 API 参考文档。请注意,原始 CP 求解器是路由库的基础,自定义路由模型可能需要其 API。
导入库
以下代码会导入所需的库。
Python
from ortools.constraint_solver import pywrapcp
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger;
C#
using System; using Google.OrTools.ConstraintSolver;
声明求解器
以下代码会声明求解器。
Python
solver = pywrapcp.Solver("CPSimple")
C++
Solver solver("CpSimple");
Java
Solver solver = new Solver("CpSimple");
C#
Solver solver = new Solver("CpSimple");
创建变量
以下代码用于创建该问题的变量。
该求解器会创建 x、y 和 z 三个变量,每个变量可以取值 0、1 或 2。
Python
num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z")
C++
const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z");
Java
final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z");
C#
const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z");
创建限制条件
以下代码会创建约束条件 x ≠ y
。
Python
solver.Add(x != y) print("Number of constraints: ", solver.Constraints())
C++
solver.AddConstraint(solver.MakeAllDifferent({x, y})); LOG(INFO) << "Number of constraints: " << std::to_string(solver.constraints());
Java
solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y})); logger.info("Number of constraints: " + solver.constraints());
C#
solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y })); Console.WriteLine($"Number of constraints: {solver.Constraints()}");
调用求解器
以下代码调用求解器。
决策构建器是原始 CP 求解器的主要输入。它包含以下内容:
vars
- 包含问题变量的数组。- 一条规则,用于选择要向哪个变量赋值。
- 一条规则,用于选择要分配给该变量的下一个值。
如需了解详情,请参阅决策构建器。
Python
decision_builder = solver.Phase( [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE )
C++
DecisionBuilder* const db = solver.MakePhase( {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
Java
final DecisionBuilder db = solver.makePhase( new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
C#
DecisionBuilder db = solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
输出解决方案
解决方案打印机的代码会在求解器找到后显示每个解决方案,详见下一部分。
由于我们的问题有多种解决方案,因此可以使用 while solver.NextSolution()
循环遍历这些解决方案。(请注意,这与 CP-SAT 求解器的解决方案打印机的运作方式不同)。
Python
count = 0 solver.NewSearch(decision_builder) while solver.NextSolution(): count += 1 solution = f"Solution {count}:\n" for var in [x, y, z]: solution += f" {var.Name()} = {var.Value()}" print(solution) solver.EndSearch() print(f"Number of solutions found: {count}")
C++
int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; LOG(INFO) << "Solution " << count << ":" << std::endl << " x=" << x->Value() << " y=" << y->Value() << " z=" << z->Value(); } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << solver.solutions();
Java
int count = 0; solver.newSearch(db); while (solver.nextSolution()) { ++count; logger.info( String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value())); } solver.endSearch(); logger.info("Number of solutions found: " + solver.solutions());
C#
int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}"); } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {solver.Solutions()}");
求解器返回的结果
以下是求解器找到的 18 个解:
Number of constraints: 1 Solution 1: x = 0 y = 1 z = 0 Solution 2: x = 0 y = 1 z = 1 Solution 3: x = 0 y = 1 z = 2 Solution 4: x = 0 y = 2 z = 0 Solution 5: x = 0 y = 2 z = 1 Solution 6: x = 0 y = 2 z = 2 Solution 7: x = 1 y = 0 z = 0 Solution 8: x = 1 y = 0 z = 1 Solution 9: x = 1 y = 0 z = 2 Solution 10: x = 1 y = 2 z = 0 Solution 11: x = 1 y = 2 z = 1 Solution 12: x = 1 y = 2 z = 2 Solution 13: x = 2 y = 0 z = 0 Solution 14: x = 2 y = 0 z = 1 Solution 15: x = 2 y = 0 z = 2 Solution 16: x = 2 y = 1 z = 0 Solution 17: x = 2 y = 1 z = 1 Solution 18: x = 2 y = 1 z = 2 Number of solutions found: 18 Advanced usage: Problem solved in 2 ms Memory usage: 13918208 bytes
完整程序
以下是使用原始 CP 求解器的示例的完整程序。
Python
"""Simple Constraint optimization example.""" from ortools.constraint_solver import pywrapcp def main(): """Entry point of the program.""" # Instantiate the solver. solver = pywrapcp.Solver("CPSimple") # Create the variables. num_vals = 3 x = solver.IntVar(0, num_vals - 1, "x") y = solver.IntVar(0, num_vals - 1, "y") z = solver.IntVar(0, num_vals - 1, "z") # Constraint 0: x != y. solver.Add(x != y) print("Number of constraints: ", solver.Constraints()) # Solve the problem. decision_builder = solver.Phase( [x, y, z], solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE ) # Print solution on console. count = 0 solver.NewSearch(decision_builder) while solver.NextSolution(): count += 1 solution = f"Solution {count}:\n" for var in [x, y, z]: solution += f" {var.Name()} = {var.Value()}" print(solution) solver.EndSearch() print(f"Number of solutions found: {count}") print("Advanced usage:") print(f"Problem solved in {solver.WallTime()}ms") print(f"Memory usage: {pywrapcp.Solver.MemoryUsage()}bytes") if __name__ == "__main__": main()
C++
#include <ostream> #include <string> #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { void SimpleCpProgram() { // Instantiate the solver. Solver solver("CpSimple"); // Create the variables. const int64_t num_vals = 3; IntVar* const x = solver.MakeIntVar(0, num_vals - 1, "x"); IntVar* const y = solver.MakeIntVar(0, num_vals - 1, "y"); IntVar* const z = solver.MakeIntVar(0, num_vals - 1, "z"); // Constraint 0: x != y.. solver.AddConstraint(solver.MakeAllDifferent({x, y})); LOG(INFO) << "Number of constraints: " << std::to_string(solver.constraints()); // Solve the problem. DecisionBuilder* const db = solver.MakePhase( {x, y, z}, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; LOG(INFO) << "Solution " << count << ":" << std::endl << " x=" << x->Value() << " y=" << y->Value() << " z=" << z->Value(); } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << solver.solutions(); LOG(INFO) << "Advanced usage:" << std::endl << "Problem solved in " << std::to_string(solver.wall_time()) << "ms" << std::endl << "Memory usage: " << std::to_string(Solver::MemoryUsage()) << "bytes"; } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::SimpleCpProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; import java.util.logging.Logger; /** Simple CP Program.*/ public class SimpleCpProgram { private SimpleCpProgram() {} private static final Logger logger = Logger.getLogger(SimpleCpProgram.class.getName()); public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CpSimple"); // Create the variables. final long numVals = 3; final IntVar x = solver.makeIntVar(0, numVals - 1, "x"); final IntVar y = solver.makeIntVar(0, numVals - 1, "y"); final IntVar z = solver.makeIntVar(0, numVals - 1, "z"); // Constraint 0: x != y.. solver.addConstraint(solver.makeAllDifferent(new IntVar[] {x, y})); logger.info("Number of constraints: " + solver.constraints()); // Solve the problem. final DecisionBuilder db = solver.makePhase( new IntVar[] {x, y, z}, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.newSearch(db); while (solver.nextSolution()) { ++count; logger.info( String.format("Solution: %d\n x=%d y=%d z=%d", count, x.value(), y.value(), z.value())); } solver.endSearch(); logger.info("Number of solutions found: " + solver.solutions()); logger.info(String.format("Advanced usage:\nProblem solved in %d ms\nMemory usage: %d bytes", solver.wallTime(), Solver.memoryUsage())); } }
C#
using System; using Google.OrTools.ConstraintSolver; /// <summary> /// This is a simple CP program. /// </summary> public class SimpleCpProgram { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CpSimple"); // Create the variables. const long numVals = 3; IntVar x = solver.MakeIntVar(0, numVals - 1, "x"); IntVar y = solver.MakeIntVar(0, numVals - 1, "y"); IntVar z = solver.MakeIntVar(0, numVals - 1, "z"); // Constraint 0: x != y.. solver.Add(solver.MakeAllDifferent(new IntVar[] { x, y })); Console.WriteLine($"Number of constraints: {solver.Constraints()}"); // Solve the problem. DecisionBuilder db = solver.MakePhase(new IntVar[] { x, y, z }, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // Print solution on console. int count = 0; solver.NewSearch(db); while (solver.NextSolution()) { ++count; Console.WriteLine($"Solution: {count}\n x={x.Value()} y={y.Value()} z={z.Value()}"); } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {solver.Solutions()}"); Console.WriteLine("Advanced usage:"); Console.WriteLine($"Problem solved in {solver.WallTime()}ms"); Console.WriteLine($"Memory usage: {Solver.MemoryUsage()}bytes"); } }
决策者
原始 CP 求解器的主要输入是决策构建器,它包含问题的变量并设置求解器的选项。
上一部分中的代码示例使用 Phase
方法(对应于 C++ 方法 MakePhase
)创建决策构建器。
“阶段”一词指的是搜索的一个阶段。在这个简单示例中,只有一个阶段,但对于更复杂的问题,决策制定工具可以有多个阶段,以便求解器从一个阶段到下一个阶段采用不同的搜索策略。
Phase
方法有三个输入参数:
vars
- 包含问题变量的数组,在本例中为[x, y, z]
。IntVarStrategy
- 用于选择下一个未绑定变量来赋值的规则。此处的代码使用了默认的CHOOSE_FIRST_UNBOUND
,这意味着在每一步,求解器都会按照第一个未绑定变量在传递给Phase
方法的变量数组中出现的顺序选择第一个未绑定变量。IntValueStrategy
- 用于选择要为变量分配的下一个值的规则。 此处的代码使用默认ASSIGN_MIN_VALUE
,它会选择尚未为变量尝试过的最小值。这将按递增顺序分配值。另一个选项是ASSIGN_MAX_VALUE
,在这种情况下,求解器将按降序分配值。