线性求和求解器

本部分介绍了线性和赋值求解器,一种专用的 可以解决简单的分配问题,这比 MIP 或 CP-SAT 求解器。然而,MIP 和 CP-SAT 求解器可以 更广泛的问题,因此在大多数情况下是最佳选择。

费用矩阵

工作器和任务的费用如下表所示。

工作器 任务 0 任务 1 任务 2 任务 3
0 90 76 75 70
1 35 85 55 65
2 125 95 90 105
3 45 110 95 115

以下部分介绍了一个 Python 程序,可用于处理作业, 计算问题。

导入库

导入所需库的代码如下所示。

Python

import numpy as np

from ortools.graph.python import linear_sum_assignment

C++

#include "ortools/graph/assignment.h"

#include <cstdint>
#include <numeric>
#include <string>
#include <vector>

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.LinearSumAssignment;
import java.util.stream.IntStream;

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Graph;

定义数据

以下代码会为程序创建数据。

Python

costs = np.array(
    [
        [90, 76, 75, 70],
        [35, 85, 55, 65],
        [125, 95, 90, 105],
        [45, 110, 95, 115],
    ]
)

# Let's transform this into 3 parallel vectors (start_nodes, end_nodes,
# arc_costs)
end_nodes_unraveled, start_nodes_unraveled = np.meshgrid(
    np.arange(costs.shape[1]), np.arange(costs.shape[0])
)
start_nodes = start_nodes_unraveled.ravel()
end_nodes = end_nodes_unraveled.ravel()
arc_costs = costs.ravel()

C++

const int num_workers = 4;
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = 4;
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70}},    // Worker 0
    {{35, 85, 55, 65}},    // Worker 1
    {{125, 95, 90, 105}},  // Worker 2
    {{45, 110, 95, 115}},  // Worker 3
}};

Java

final int[][] costs = {
    {90, 76, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 105},
    {45, 110, 95, 115},
};
final int numWorkers = 4;
final int numTasks = 4;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

C#

int[,] costs = {
    { 90, 76, 75, 70 },
    { 35, 85, 55, 65 },
    { 125, 95, 90, 105 },
    { 45, 110, 95, 115 },
};
int numWorkers = 4;
int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int numTasks = 4;
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

该数组是成本矩阵,其 ij 条目是工作器 i 的成本 以执行任务 j。有四个 worker,分别与 矩阵,以及四个任务(与各列相对应)。

创建求解器

该程序使用 线性分配求解器 用于解决作业问题的专业求解器。

以下代码将创建求解器。

Python

assignment = linear_sum_assignment.SimpleLinearSumAssignment()

C++

SimpleLinearSumAssignment assignment;

Java

LinearSumAssignment assignment = new LinearSumAssignment();

C#

LinearSumAssignment assignment = new LinearSumAssignment();

添加约束条件

以下代码通过循环遍历 worker 来增加求解器的开销, 任务。

Python

assignment.add_arcs_with_cost(start_nodes, end_nodes, arc_costs)

C++

for (int w : all_workers) {
  for (int t : all_tasks) {
    if (costs[w][t]) {
      assignment.AddArcWithCost(w, t, costs[w][t]);
    }
  }
}

Java

// Add each arc.
for (int w : allWorkers) {
  for (int t : allTasks) {
    if (costs[w][t] != 0) {
      assignment.addArcWithCost(w, t, costs[w][t]);
    }
  }
}

C#

// Add each arc.
foreach (int w in allWorkers)
{
    foreach (int t in allTasks)
    {
        if (costs[w, t] != 0)
        {
            assignment.AddArcWithCost(w, t, costs[w, t]);
        }
    }
}

调用求解器

以下代码会调用求解器。

Python

status = assignment.solve()

C++

SimpleLinearSumAssignment::Status status = assignment.Solve();

Java

LinearSumAssignment.Status status = assignment.solve();

C#

LinearSumAssignment.Status status = assignment.Solve();

显示结果

以下代码显示了该解决方案。

Python

if status == assignment.OPTIMAL:
    print(f"Total cost = {assignment.optimal_cost()}\n")
    for i in range(0, assignment.num_nodes()):
        print(
            f"Worker {i} assigned to task {assignment.right_mate(i)}."
            + f"  Cost = {assignment.assignment_cost(i)}"
        )
elif status == assignment.INFEASIBLE:
    print("No assignment is possible.")
elif status == assignment.POSSIBLE_OVERFLOW:
    print("Some input costs are too large and may cause an integer overflow.")

C++

if (status == SimpleLinearSumAssignment::OPTIMAL) {
  LOG(INFO) << "Total cost: " << assignment.OptimalCost();
  for (int worker : all_workers) {
    LOG(INFO) << "Worker " << std::to_string(worker) << " assigned to task "
              << std::to_string(assignment.RightMate(worker)) << ". Cost: "
              << std::to_string(assignment.AssignmentCost(worker)) << ".";
  }
} else {
  LOG(INFO) << "Solving the linear assignment problem failed.";
}

Java

if (status == LinearSumAssignment.Status.OPTIMAL) {
  System.out.println("Total cost: " + assignment.getOptimalCost());
  for (int worker : allWorkers) {
    System.out.println("Worker " + worker + " assigned to task "
        + assignment.getRightMate(worker) + ". Cost: " + assignment.getAssignmentCost(worker));
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == LinearSumAssignment.Status.OPTIMAL)
{
    Console.WriteLine($"Total cost: {assignment.OptimalCost()}.");
    foreach (int worker in allWorkers)
    {
        Console.WriteLine($"Worker {worker} assigned to task {assignment.RightMate(worker)}. " +
                          $"Cost: {assignment.AssignmentCost(worker)}.");
    }
}
else
{
    Console.WriteLine("Solving the linear assignment problem failed.");
    Console.WriteLine($"Solver status: {status}.");
}

以下输出显示了工作器给任务的最佳分配。

Total cost = 265
Worker 0 assigned to task 3.  Cost = 70
Worker 1 assigned to task 2.  Cost = 55
Worker 2 assigned to task 1.  Cost = 95
Worker 3 assigned to task 0.  Cost = 45
Time = 0.000147 seconds

下图以虚线表示该解法。通过 虚线边旁的数字是它们的费用 此分配的总等待时间是以下两项费用的总和: 也就是 265

线性求和分配流程图

在图形理论中,两部分图中的一组边与 右侧只有一个节点的情况称为完美匹配。

整个计划

以下是整个计划。

Python

"""Solve assignment problem using linear assignment solver."""
import numpy as np

from ortools.graph.python import linear_sum_assignment


def main():
    """Linear Sum Assignment example."""
    assignment = linear_sum_assignment.SimpleLinearSumAssignment()

    costs = np.array(
        [
            [90, 76, 75, 70],
            [35, 85, 55, 65],
            [125, 95, 90, 105],
            [45, 110, 95, 115],
        ]
    )

    # Let's transform this into 3 parallel vectors (start_nodes, end_nodes,
    # arc_costs)
    end_nodes_unraveled, start_nodes_unraveled = np.meshgrid(
        np.arange(costs.shape[1]), np.arange(costs.shape[0])
    )
    start_nodes = start_nodes_unraveled.ravel()
    end_nodes = end_nodes_unraveled.ravel()
    arc_costs = costs.ravel()

    assignment.add_arcs_with_cost(start_nodes, end_nodes, arc_costs)

    status = assignment.solve()

    if status == assignment.OPTIMAL:
        print(f"Total cost = {assignment.optimal_cost()}\n")
        for i in range(0, assignment.num_nodes()):
            print(
                f"Worker {i} assigned to task {assignment.right_mate(i)}."
                + f"  Cost = {assignment.assignment_cost(i)}"
            )
    elif status == assignment.INFEASIBLE:
        print("No assignment is possible.")
    elif status == assignment.POSSIBLE_OVERFLOW:
        print("Some input costs are too large and may cause an integer overflow.")


if __name__ == "__main__":
    main()

C++

#include "ortools/graph/assignment.h"

#include <cstdint>
#include <numeric>
#include <string>
#include <vector>

namespace operations_research {
// Simple Linear Sum Assignment Problem (LSAP).
void AssignmentLinearSumAssignment() {
  SimpleLinearSumAssignment assignment;

  const int num_workers = 4;
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = 4;
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70}},    // Worker 0
      {{35, 85, 55, 65}},    // Worker 1
      {{125, 95, 90, 105}},  // Worker 2
      {{45, 110, 95, 115}},  // Worker 3
  }};

  for (int w : all_workers) {
    for (int t : all_tasks) {
      if (costs[w][t]) {
        assignment.AddArcWithCost(w, t, costs[w][t]);
      }
    }
  }

  SimpleLinearSumAssignment::Status status = assignment.Solve();

  if (status == SimpleLinearSumAssignment::OPTIMAL) {
    LOG(INFO) << "Total cost: " << assignment.OptimalCost();
    for (int worker : all_workers) {
      LOG(INFO) << "Worker " << std::to_string(worker) << " assigned to task "
                << std::to_string(assignment.RightMate(worker)) << ". Cost: "
                << std::to_string(assignment.AssignmentCost(worker)) << ".";
    }
  } else {
    LOG(INFO) << "Solving the linear assignment problem failed.";
  }
}

}  // namespace operations_research

int main() {
  operations_research::AssignmentLinearSumAssignment();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.LinearSumAssignment;
import java.util.stream.IntStream;

/** Minimal Linear Sum Assignment problem. */
public class AssignmentLinearSumAssignment {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    LinearSumAssignment assignment = new LinearSumAssignment();

    final int[][] costs = {
        {90, 76, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 105},
        {45, 110, 95, 115},
    };
    final int numWorkers = 4;
    final int numTasks = 4;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Add each arc.
    for (int w : allWorkers) {
      for (int t : allTasks) {
        if (costs[w][t] != 0) {
          assignment.addArcWithCost(w, t, costs[w][t]);
        }
      }
    }

    LinearSumAssignment.Status status = assignment.solve();

    if (status == LinearSumAssignment.Status.OPTIMAL) {
      System.out.println("Total cost: " + assignment.getOptimalCost());
      for (int worker : allWorkers) {
        System.out.println("Worker " + worker + " assigned to task "
            + assignment.getRightMate(worker) + ". Cost: " + assignment.getAssignmentCost(worker));
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private AssignmentLinearSumAssignment() {}
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Graph;

public class AssignmentLinearSumAssignment
{
    static void Main()
    {
        LinearSumAssignment assignment = new LinearSumAssignment();

        int[,] costs = {
            { 90, 76, 75, 70 },
            { 35, 85, 55, 65 },
            { 125, 95, 90, 105 },
            { 45, 110, 95, 115 },
        };
        int numWorkers = 4;
        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int numTasks = 4;
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        // Add each arc.
        foreach (int w in allWorkers)
        {
            foreach (int t in allTasks)
            {
                if (costs[w, t] != 0)
                {
                    assignment.AddArcWithCost(w, t, costs[w, t]);
                }
            }
        }

        LinearSumAssignment.Status status = assignment.Solve();

        if (status == LinearSumAssignment.Status.OPTIMAL)
        {
            Console.WriteLine($"Total cost: {assignment.OptimalCost()}.");
            foreach (int worker in allWorkers)
            {
                Console.WriteLine($"Worker {worker} assigned to task {assignment.RightMate(worker)}. " +
                                  $"Cost: {assignment.AssignmentCost(worker)}.");
            }
        }
        else
        {
            Console.WriteLine("Solving the linear assignment problem failed.");
            Console.WriteLine($"Solver status: {status}.");
        }
    }
}

工作器无法执行所有任务时的解决方案

在前面的示例中,我们假设所有 worker 都可以执行所有任务。但是 但实际情况并非总是如此 - 工作器可能无法执行一个或多个任务 。不过,可以轻松修改上述程序来处理 这个。

例如,假设工作器 0 无法执行任务 3。要修改 进行以下更改:

  1. 将费用矩阵的条目 0、3 更改为字符串 'NA'。(任何字符串均可。)
    cost = [[90, 76, 75, 'NA'],
        [35, 85, 55, 65],
        [125, 95, 90, 105],
        [45, 110, 95, 115]]
  2. 在为求解器分配开销的代码部分中,添加以下代码行 if cost[worker][task] != 'NA':,如下所示。
    for worker in range(0, rows):
    for task in range(0, cols):
      if cost[worker][task] != 'NA':
        assignment.AddArcWithCost(worker, task, cost[worker][task])
    所添加的代码行可防止在代价矩阵中的条目为 'NA' 的任何边 添加到求解器中。

进行这些更改并运行修改后的代码后,您会看到以下内容 输出:

Total cost = 276
Worker 0 assigned to task 1.  Cost = 76
Worker 1 assigned to task 3.  Cost = 65
Worker 2 assigned to task 2.  Cost = 90
Worker 3 assigned to task 0.  Cost = 45

请注意,现在的总费用比原始问题的费用高。 这并不奇怪,因为在原始问题中, 向任务 3 分配了工作器 0,而在已修改的问题中,分配 不允许。

要了解当更多工作器无法执行任务时会发生什么情况,您可以将 'NA' 为成本矩阵中的更多条目,以表示 无法执行某些任务:

cost = [[90, 76, 'NA', 'NA'],
        [35, 85, 'NA', 'NA'],
        [125, 95, 'NA','NA'],
        [45, 110, 95, 115]]

这次运行程序时,得到的结果是否定的:

No assignment is possible.

这意味着无法将工作器分配给任务, 执行不同的任务。您可以通过查看图表了解 问题(没有与 'NA' 的值相对应的边) 计算。

线性求和分配解流程图

由于这三个工作器的节点 0、1 和 2 仅连接到 节点,则无法为这些节点分配不同的任务 worker。

婚姻定理

图理论中有一个众所周知的结果,叫做 婚姻定理, 它告诉我们何时可以 将左侧的每个节点分配到 上面所示的两部分图中位于右边的点。此类作业 称为完美匹配。简而言之,该定理表明 如果左侧没有节点子集(如上例中的节点一样) ),其边缘通向右侧较小的一组节点。

更准确地说,该定理表明两部分图有一个完美匹配 当且仅当对于图谱左侧的节点的任何子集 S 时, 图表右侧的一组节点,这些节点通过一条边连接到 节点至少和 S 一样大。