Calcolo dei percorsi dei veicoli con prelievi e consegne

In questa sezione descriviamo un VRP in cui ogni veicolo preleva articoli presso in vari luoghi e li lascia in altri. Il problema è assegnare le route consentire ai veicoli di prendere e consegnare tutti gli articoli, riducendo al minimo del percorso più lungo.

Esempio di VRP con ritiri e consegne

Il diagramma seguente mostra le località di ritiro e consegna su una griglia simile a quello dell'esempio di VRP precedente. Per ogni l'articolo deve avere un bordo diretto dal punto di ritiro al luogo di consegna.

Risoluzione dell'esempio con OR-Tools

Le seguenti sezioni descrivono come risolvere il VRP con ritiri e consegne di Google. Gran parte del codice viene preso in prestito precedente esempio di VRP, quindi concentrati sulle parti nuove.

crea i dati

I dati del problema includono la matrice delle distanze del VRP precedente esempio, insieme a un elenco di coppie di luoghi di ritiro e consegna, data['pickups_deliveries'], corrispondente ai bordi diretti nel diagramma in alto. Il codice riportato di seguito definisce i luoghi di ritiro e consegna.

Python

    data["pickups_deliveries"] = [
        [1, 6],
        [2, 10],
        [4, 3],
        [5, 9],
        [7, 8],
        [15, 11],
        [13, 12],
        [16, 14],
    ]

C++

  const std::vector<std::vector<RoutingIndexManager::NodeIndex>>
      pickups_deliveries{
          {RoutingIndexManager::NodeIndex{1},
           RoutingIndexManager::NodeIndex{6}},
          {RoutingIndexManager::NodeIndex{2},
           RoutingIndexManager::NodeIndex{10}},
          {RoutingIndexManager::NodeIndex{4},
           RoutingIndexManager::NodeIndex{3}},
          {RoutingIndexManager::NodeIndex{5},
           RoutingIndexManager::NodeIndex{9}},
          {RoutingIndexManager::NodeIndex{7},
           RoutingIndexManager::NodeIndex{8}},
          {RoutingIndexManager::NodeIndex{15},
           RoutingIndexManager::NodeIndex{11}},
          {RoutingIndexManager::NodeIndex{13},
           RoutingIndexManager::NodeIndex{12}},
          {RoutingIndexManager::NodeIndex{16},
           RoutingIndexManager::NodeIndex{14}},
      };

Java

    public final int[][] pickupsDeliveries = {
        {1, 6},
        {2, 10},
        {4, 3},
        {5, 9},
        {7, 8},
        {15, 11},
        {13, 12},
        {16, 14},
    };

C#

        public int[][] PickupsDeliveries = {
            new int[] { 1, 6 }, new int[] { 2, 10 },  new int[] { 4, 3 },   new int[] { 5, 9 },
            new int[] { 7, 8 }, new int[] { 15, 11 }, new int[] { 13, 12 }, new int[] { 16, 14 },
        };

Per ogni coppia, la prima voce è l'indice del punto di ritiro, mentre la seconda è l'indice della località di consegna.

Definisci le richieste di ritiro e consegna

Il seguente codice definisce le richieste di ritiro e consegna, utilizzando Ritira e località di consegna in data['pickups_deliveries'].

Python

    for request in data["pickups_deliveries"]:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index)
        )
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index)
            <= distance_dimension.CumulVar(delivery_index)
        )

C++

  Solver* const solver = routing.solver();
  for (const auto& request : data.pickups_deliveries) {
    const int64_t pickup_index = manager.NodeToIndex(request[0]);
    const int64_t delivery_index = manager.NodeToIndex(request[1]);
    routing.AddPickupAndDelivery(pickup_index, delivery_index);
    solver->AddConstraint(solver->MakeEquality(
        routing.VehicleVar(pickup_index), routing.VehicleVar(delivery_index)));
    solver->AddConstraint(
        solver->MakeLessOrEqual(distance_dimension->CumulVar(pickup_index),
                                distance_dimension->CumulVar(delivery_index)));
  }

Java

    Solver solver = routing.solver();
    for (int[] request : data.pickupsDeliveries) {
      long pickupIndex = manager.nodeToIndex(request[0]);
      long deliveryIndex = manager.nodeToIndex(request[1]);
      routing.addPickupAndDelivery(pickupIndex, deliveryIndex);
      solver.addConstraint(
          solver.makeEquality(routing.vehicleVar(pickupIndex), routing.vehicleVar(deliveryIndex)));
      solver.addConstraint(solver.makeLessOrEqual(
          distanceDimension.cumulVar(pickupIndex), distanceDimension.cumulVar(deliveryIndex)));
    }

C#

        Solver solver = routing.solver();
        for (int i = 0; i < data.PickupsDeliveries.GetLength(0); i++)
        {
            long pickupIndex = manager.NodeToIndex(data.PickupsDeliveries[i][0]);
            long deliveryIndex = manager.NodeToIndex(data.PickupsDeliveries[i][1]);
            routing.AddPickupAndDelivery(pickupIndex, deliveryIndex);
            solver.Add(solver.MakeEquality(routing.VehicleVar(pickupIndex), routing.VehicleVar(deliveryIndex)));
            solver.Add(solver.MakeLessOrEqual(distanceDimension.CumulVar(pickupIndex),
                                              distanceDimension.CumulVar(deliveryIndex)));
        }

Per ogni coppia, il comando routing.AddPickupAndDelivery(pickup_index, delivery_index) crea un ritiro e la richiesta di consegna di un articolo.

La riga seguente aggiunge il requisito secondo cui ogni articolo deve essere ritirato e consegnati dallo stesso veicolo.

routing.solver().Add(
            routing.VehicleVar(pickup_index) ==
            routing.VehicleVar(delivery_index))

Infine, aggiungiamo l'ovvio requisito secondo cui ogni articolo deve essere ritirato prima della pubblicazione. Per farlo, richiediamo la distanza cumulativa di un veicolo presso il punto di ritiro di un articolo non è al massimo la distanza cumulativa dalla località di consegna.

routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))

Esecuzione del programma

I programmi completi per il VRP con ritiri e consegne sono mostrati in nella prossima sezione. Quando esegui il programma, vengono visualizzate le route indicate di seguito.

Objective: 226116
Route for vehicle 0:
 0 ->  13 ->  15 ->  11 ->  12 -> 0
Distance of the route: 1552m

Route for vehicle 1:
 0 ->  5 ->  2 ->  10 ->  16 ->  14 ->  9 -> 0
Distance of the route: 2192m

Route for vehicle 2:
 0 ->  4 ->  3 -> 0
Distance of the route: 1392m

Route for vehicle 3:
 0 ->  7 ->  1 ->  6 ->  8 -> 0
Distance of the route: 1780m

Total Distance of all routes: 6916m

Il seguente diagramma mostra le route:

Completa i programmi

Di seguito sono riportati i programmi completi.

Python

"""Simple Pickup Delivery Problem (PDP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["distance_matrix"] = [
        # fmt: off
      [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662],
      [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210],
      [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754],
      [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358],
      [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244],
      [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708],
      [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480],
      [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856],
      [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514],
      [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468],
      [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354],
      [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844],
      [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730],
      [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536],
      [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194],
      [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798],
      [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0],
        # fmt: on
    ]
    data["pickups_deliveries"] = [
        [1, 6],
        [2, 10],
        [4, 3],
        [5, 9],
        [7, 8],
        [15, 11],
        [13, 12],
        [16, 14],
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    total_distance = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += f" {manager.IndexToNode(index)} -> "
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id
            )
        plan_output += f"{manager.IndexToNode(index)}\n"
        plan_output += f"Distance of the route: {route_distance}m\n"
        print(plan_output)
        total_distance += route_distance
    print(f"Total Distance of all routes: {total_distance}m")


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Define cost of each arc.
    def distance_callback(from_index, to_index):
        """Returns the manhattan distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["distance_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = "Distance"
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        3000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name,
    )
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Define Transportation Requests.
    for request in data["pickups_deliveries"]:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index)
        )
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index)
            <= distance_dimension.CumulVar(delivery_index)
        )

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> distance_matrix{
      {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468,
       776, 662},
      {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
       1016, 868, 1210},
      {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130,
       788, 1552, 754},
      {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
       1164, 560, 1358},
      {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
       1050, 674, 1244},
      {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514,
       1050, 708},
      {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514,
       1278, 480},
      {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662,
       742, 856},
      {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320,
       1084, 514},
      {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274,
       810, 468},
      {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730,
       388, 1152, 354},
      {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308,
       650, 274, 844},
      {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536,
       388, 730},
      {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342,
       422, 536},
      {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342,
       0, 764, 194},
      {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388,
       422, 764, 0, 798},
      {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536,
       194, 798, 0},
  };
  const std::vector<std::vector<RoutingIndexManager::NodeIndex>>
      pickups_deliveries{
          {RoutingIndexManager::NodeIndex{1},
           RoutingIndexManager::NodeIndex{6}},
          {RoutingIndexManager::NodeIndex{2},
           RoutingIndexManager::NodeIndex{10}},
          {RoutingIndexManager::NodeIndex{4},
           RoutingIndexManager::NodeIndex{3}},
          {RoutingIndexManager::NodeIndex{5},
           RoutingIndexManager::NodeIndex{9}},
          {RoutingIndexManager::NodeIndex{7},
           RoutingIndexManager::NodeIndex{8}},
          {RoutingIndexManager::NodeIndex{15},
           RoutingIndexManager::NodeIndex{11}},
          {RoutingIndexManager::NodeIndex{13},
           RoutingIndexManager::NodeIndex{12}},
          {RoutingIndexManager::NodeIndex{16},
           RoutingIndexManager::NodeIndex{14}},
      };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  int64_t total_distance{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for Vehicle " << vehicle_id << ":";
    int64_t route_distance{0};
    std::stringstream route;
    while (!routing.IsEnd(index)) {
      route << manager.IndexToNode(index).value() << " -> ";
      const int64_t previous_index = index;
      index = solution.Value(routing.NextVar(index));
      route_distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     int64_t{vehicle_id});
    }
    LOG(INFO) << route.str() << manager.IndexToNode(index).value();
    LOG(INFO) << "Distance of the route: " << route_distance << "m";
    total_distance += route_distance;
  }
  LOG(INFO) << "Total distance of all routes: " << total_distance << "m";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpGlobalSpan() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.distance_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Define cost of each arc.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to distance matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.distance_matrix[from_node][to_node];
      });
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Distance constraint.
  routing.AddDimension(transit_callback_index,  // transit callback
                       0,                       // no slack
                       3000,  // vehicle maximum travel distance
                       true,  // start cumul to zero
                       "Distance");
  RoutingDimension* distance_dimension =
      routing.GetMutableDimension("Distance");
  distance_dimension->SetGlobalSpanCostCoefficient(100);

  // Define Transportation Requests.
  Solver* const solver = routing.solver();
  for (const auto& request : data.pickups_deliveries) {
    const int64_t pickup_index = manager.NodeToIndex(request[0]);
    const int64_t delivery_index = manager.NodeToIndex(request[1]);
    routing.AddPickupAndDelivery(pickup_index, delivery_index);
    solver->AddConstraint(solver->MakeEquality(
        routing.VehicleVar(pickup_index), routing.VehicleVar(delivery_index)));
    solver->AddConstraint(
        solver->MakeLessOrEqual(distance_dimension->CumulVar(pickup_index),
                                distance_dimension->CumulVar(delivery_index)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpGlobalSpan();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.Solver;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** Minimal Pickup & Delivery Problem (PDP).*/
public class VrpPickupDelivery {
  private static final Logger logger = Logger.getLogger(VrpPickupDelivery.class.getName());

  static class DataModel {
    public final long[][] distanceMatrix = {
        {0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662},
        {548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210},
        {776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754},
        {696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358},
        {582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244},
        {274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708},
        {502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480},
        {194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856},
        {308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514},
        {194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468},
        {536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354},
        {502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844},
        {388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730},
        {354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536},
        {468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194},
        {776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798},
        {662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0},
    };
    public final int[][] pickupsDeliveries = {
        {1, 6},
        {2, 10},
        {4, 3},
        {5, 9},
        {7, 8},
        {15, 11},
        {13, 12},
        {16, 14},
    };
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    long totalDistance = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      long routeDistance = 0;
      String route = "";
      while (!routing.isEnd(index)) {
        route += manager.indexToNode(index) + " -> ";
        long previousIndex = index;
        index = solution.value(routing.nextVar(index));
        routeDistance += routing.getArcCostForVehicle(previousIndex, index, i);
      }
      logger.info(route + manager.indexToNode(index));
      logger.info("Distance of the route: " + routeDistance + "m");
      totalDistance += routeDistance;
    }
    logger.info("Total Distance of all routes: " + totalDistance + "m");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.distanceMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.distanceMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Distance constraint.
    routing.addDimension(transitCallbackIndex, // transit callback index
        0, // no slack
        3000, // vehicle maximum travel distance
        true, // start cumul to zero
        "Distance");
    RoutingDimension distanceDimension = routing.getMutableDimension("Distance");
    distanceDimension.setGlobalSpanCostCoefficient(100);

    // Define Transportation Requests.
    Solver solver = routing.solver();
    for (int[] request : data.pickupsDeliveries) {
      long pickupIndex = manager.nodeToIndex(request[0]);
      long deliveryIndex = manager.nodeToIndex(request[1]);
      routing.addPickupAndDelivery(pickupIndex, deliveryIndex);
      solver.addConstraint(
          solver.makeEquality(routing.vehicleVar(pickupIndex), routing.vehicleVar(deliveryIndex)));
      solver.addConstraint(solver.makeLessOrEqual(
          distanceDimension.cumulVar(pickupIndex), distanceDimension.cumulVar(deliveryIndex)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PARALLEL_CHEAPEST_INSERTION)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Minimal Pickup & Delivery Problem (PDP).
/// </summary>
public class VrpPickupDelivery
{
    class DataModel
    {
        public long[,] DistanceMatrix = {
            { 0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662 },
            { 548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210 },
            { 776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754 },
            { 696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358 },
            { 582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244 },
            { 274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708 },
            { 502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480 },
            { 194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856 },
            { 308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514 },
            { 194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468 },
            { 536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354 },
            { 502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844 },
            { 388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730 },
            { 354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536 },
            { 468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194 },
            { 776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798 },
            { 662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0 }
        };
        public int[][] PickupsDeliveries = {
            new int[] { 1, 6 }, new int[] { 2, 10 },  new int[] { 4, 3 },   new int[] { 5, 9 },
            new int[] { 7, 8 }, new int[] { 15, 11 }, new int[] { 13, 12 }, new int[] { 16, 14 },
        };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        long totalDistance = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            long routeDistance = 0;
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                Console.Write("{0} -> ", manager.IndexToNode((int)index));
                var previousIndex = index;
                index = solution.Value(routing.NextVar(index));
                routeDistance += routing.GetArcCostForVehicle(previousIndex, index, 0);
            }
            Console.WriteLine("{0}", manager.IndexToNode((int)index));
            Console.WriteLine("Distance of the route: {0}m", routeDistance);
            totalDistance += routeDistance;
        }
        Console.WriteLine("Total Distance of all routes: {0}m", totalDistance);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.DistanceMatrix.GetLength(0), data.VehicleNumber, data.Depot);


        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to
                                                                       // distance matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.DistanceMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Distance constraint.
        routing.AddDimension(transitCallbackIndex, 0, 3000,
                             true, // start cumul to zero
                             "Distance");
        RoutingDimension distanceDimension = routing.GetMutableDimension("Distance");
        distanceDimension.SetGlobalSpanCostCoefficient(100);

        // Define Transportation Requests.
        Solver solver = routing.solver();
        for (int i = 0; i < data.PickupsDeliveries.GetLength(0); i++)
        {
            long pickupIndex = manager.NodeToIndex(data.PickupsDeliveries[i][0]);
            long deliveryIndex = manager.NodeToIndex(data.PickupsDeliveries[i][1]);
            routing.AddPickupAndDelivery(pickupIndex, deliveryIndex);
            solver.Add(solver.MakeEquality(routing.VehicleVar(pickupIndex), routing.VehicleVar(deliveryIndex)));
            solver.Add(solver.MakeLessOrEqual(distanceDimension.CumulVar(pickupIndex),
                                              distanceDimension.CumulVar(deliveryIndex)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}