Banyak masalah pemilihan rute kendaraan melibatkan penjadwalan kunjungan ke pelanggan yang hanya tersedia selama jangka waktu tertentu.
Masalah ini dikenal sebagai masalah pemilihan rute kendaraan dengan jangka waktu (VRPTW).
Contoh VRPTW
Di halaman ini, kita akan melihat contoh yang menunjukkan cara menyelesaikan VRPTW. Karena masalahnya melibatkan periode waktu, datanya menyertakan matriks waktu, yang berisi waktu perjalanan antarlokasi (bukan matriks jarak seperti pada contoh sebelumnya).
Diagram di bawah menunjukkan lokasi yang akan dikunjungi dalam warna biru dan depot berwarna hitam. Periode waktu ditampilkan di atas setiap lokasi. Lihat Koordinat lokasi di bagian VRP untuk mengetahui detail selengkapnya tentang cara lokasi ditentukan.
Tujuannya adalah untuk meminimalkan total waktu tempuh kendaraan.
Menyelesaikan contoh VRPTW dengan OR-Tools
Bagian berikut menjelaskan cara menyelesaikan contoh VRPTW dengan OR-Tools.
Membuat data
Fungsi berikut membuat data untuk soal tersebut.
Python
def create_data_model(): """Stores the data for the problem.""" data = {} data["time_matrix"] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data["time_windows"] = [ (0, 5), # depot (7, 12), # 1 (10, 15), # 2 (16, 18), # 3 (10, 13), # 4 (0, 5), # 5 (5, 10), # 6 (0, 4), # 7 (5, 10), # 8 (0, 3), # 9 (10, 16), # 10 (10, 15), # 11 (0, 5), # 12 (5, 10), # 13 (7, 8), # 14 (10, 15), # 15 (11, 15), # 16 ] data["num_vehicles"] = 4 data["depot"] = 0 return dataData terdiri dari:
-
data['time_matrix']
: Array waktu perjalanan di antara beberapa lokasi. Perhatikan bahwa ini berbeda dengan contoh sebelumnya, yang menggunakan matriks jarak. Jika semua kendaraan bergerak dengan kecepatan yang sama, Anda akan mendapatkan solusi yang sama jika menggunakan matriks jarak atau matriks waktu, karena jarak perjalanan adalah kelipatan waktu tempuh yang konstan. -
data['time_windows']
: Array periode waktu untuk lokasi, yang dapat Anda anggap sebagai waktu yang diminta untuk kunjungan. Kendaraan harus mengunjungi lokasi dalam jangka waktu tertentu. -
data['num_vehicles']
: Jumlah kendaraan dalam armada. -
data['depot']
: Indeks depot.
C++
struct DataModel { const std::vector<std::vector<int64_t>> time_matrix{ {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; const std::vector<std::pair<int64_t, int64_t>> time_windows{ {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; };Data terdiri dari:
-
time_matrix
: Array waktu perjalanan di antara beberapa lokasi. Perhatikan bahwa ini berbeda dengan contoh sebelumnya, yang menggunakan matriks jarak. Jika semua kendaraan bergerak dengan kecepatan yang sama, Anda akan mendapatkan solusi yang sama jika menggunakan matriks jarak atau matriks waktu, karena jarak perjalanan adalah kelipatan waktu tempuh yang konstan. -
time_windows
: Array periode waktu untuk lokasi, yang dapat Anda anggap sebagai waktu yang diminta untuk kunjungan. Kendaraan harus mengunjungi lokasi dalam jangka waktu tertentu. -
num_vehicles
: Jumlah kendaraan dalam armada. -
depot
: Indeks depot.
Java
static class DataModel { public final long[][] timeMatrix = { {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; public final long[][] timeWindows = { {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; public final int vehicleNumber = 4; public final int depot = 0; }Data terdiri dari:
-
timeMatrix
: Array waktu perjalanan di antara beberapa lokasi. Perhatikan bahwa ini berbeda dengan contoh sebelumnya, yang menggunakan matriks jarak. Jika semua kendaraan bergerak dengan kecepatan yang sama, Anda akan mendapatkan solusi yang sama jika menggunakan matriks jarak atau matriks waktu, karena jarak perjalanan adalah kelipatan waktu tempuh yang konstan. -
timeWindows
: Array periode waktu untuk lokasi, yang dapat Anda anggap sebagai waktu yang diminta untuk kunjungan. Kendaraan harus mengunjungi lokasi dalam jangka waktu tertentu. -
vehicleNumber
: Jumlah kendaraan dalam armada. -
depot
: Indeks depot.
C#
class DataModel { public long[,] TimeMatrix = { { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 }, { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 }, { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 }, { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 }, { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 }, { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 }, { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 }, { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 }, { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 }, { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 }, { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 }, { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 }, { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 }, { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 }, { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 }, { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 }, { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 }, }; public long[,] TimeWindows = { { 0, 5 }, // depot { 7, 12 }, // 1 { 10, 15 }, // 2 { 16, 18 }, // 3 { 10, 13 }, // 4 { 0, 5 }, // 5 { 5, 10 }, // 6 { 0, 4 }, // 7 { 5, 10 }, // 8 { 0, 3 }, // 9 { 10, 16 }, // 10 { 10, 15 }, // 11 { 0, 5 }, // 12 { 5, 10 }, // 13 { 7, 8 }, // 14 { 10, 15 }, // 15 { 11, 15 }, // 16 }; public int VehicleNumber = 4; public int Depot = 0; };Data terdiri dari:
-
TimeMatrix
: Array waktu perjalanan di antara beberapa lokasi. Perhatikan bahwa ini berbeda dengan contoh sebelumnya, yang menggunakan matriks jarak. Jika semua kendaraan bergerak dengan kecepatan yang sama, Anda akan mendapatkan solusi yang sama jika menggunakan matriks jarak atau matriks waktu, karena jarak perjalanan adalah kelipatan waktu tempuh yang konstan. -
TimeWindows
: Array periode waktu untuk lokasi, yang dapat Anda anggap sebagai waktu yang diminta untuk kunjungan. Kendaraan harus mengunjungi lokasi dalam jangka waktu tertentu. -
VehicleNumber
: Jumlah kendaraan dalam armada. -
Depot
: Indeks depot.
Callback waktu
Fungsi berikut membuat callback waktu dan meneruskannya ke pemecah. Metode ini juga menetapkan biaya busur, yang menentukan biaya perjalanan, menjadi waktu perjalanan antarlokasi.
Python
def time_callback(from_index, to_index): """Returns the travel time between the two nodes.""" # Convert from routing variable Index to time matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["time_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(time_callback) routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
C++
const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to time matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.time_matrix[from_node][to_node]; }); routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);
Java
final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.timeMatrix[fromNode][toNode]; }); routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
C#
int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to time // matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.TimeMatrix[fromNode, toNode]; }); routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);
Menambahkan batasan periode waktu
Kode berikut menambahkan batasan jangka waktu untuk semua lokasi.
Python
time = "Time" routing.AddDimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle False, # Don't force start cumul to zero. time, ) time_dimension = routing.GetDimensionOrDie(time) # Add time window constraints for each location except depot. for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) # Add time window constraints for each vehicle start node. depot_idx = data["depot"] for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) time_dimension.CumulVar(index).SetRange( data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1] ) for i in range(data["num_vehicles"]): routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i)) ) routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))
C++
const std::string time = "Time"; routing.AddDimension(transit_callback_index, // transit callback index int64_t{30}, // allow waiting time int64_t{30}, // maximum time per vehicle false, // Don't force start cumul to zero time); const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time); // Add time window constraints for each location except depot. for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.num_vehicles; ++i) { const int64_t index = routing.Start(i); time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first, data.time_windows[0].second); } for (int i = 0; i < data.num_vehicles; ++i) { routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.End(i))); }
Java
routing.addDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.getMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]); } for (int i = 0; i < data.vehicleNumber; ++i) { routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i))); routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i))); }
C#
routing.AddDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.GetMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.VehicleNumber; ++i) { long index = routing.Start(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]); } for (int i = 0; i < data.VehicleNumber; ++i) { routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i))); }
Kode ini membuat dimensi untuk waktu
perjalanan kendaraan, mirip dengan dimensi jarak atau permintaan perjalanan
pada contoh sebelumnya. Dimensi melacak kuantitas yang terakumulasi di sepanjang
rute kendaraan. Dalam kode di atas, time_dimension.CumulVar(index)
adalah
waktu perjalanan kumulatif saat kendaraan tiba di
lokasi dengan index
yang ditentukan.
Dimensi dibuat menggunakan metode AddDimension
, yang memiliki
argumen berikut:
- Indeks untuk callback waktu perjalanan:
transit_callback_index
- Batas atas untuk slack (waktu tunggu di lokasi):
30
. Meskipun dalam contoh CVRP ditetapkan ke 0, VRPTW harus memungkinkan waktu tunggu positif karena batasan jangka waktu. - Batas atas untuk total waktu untuk setiap rute kendaraan:
30
- Variabel boolean yang menentukan apakah variabel kumulatif ditetapkan ke nol di awal setiap rute kendaraan.
- Nama dimensi.
Selanjutnya, garis
Python
for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
C++
for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); }
Java
for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); }
C#
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); }
mengharuskan kendaraan untuk mengunjungi lokasi selama jangka waktu lokasi.
Menyetel parameter penelusuran
Kode berikut menetapkan parameter penelusuran default dan metode heuristik untuk menemukan solusi pertama:
Python
search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC )
C++
RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC);
Java
RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build();
C#
RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;
Menambahkan printer solusi
Fungsi yang menampilkan solusi ditunjukkan di bawah ini.
Python
def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") time_dimension = routing.GetDimensionOrDie("Time") total_time = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" while not routing.IsEnd(index): time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})" " -> " ) index = solution.Value(routing.NextVar(index)) time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n" ) plan_output += f"Time of the route: {solution.Min(time_var)}min\n" print(plan_output) total_time += solution.Min(time_var) print(f"Total time of all routes: {total_time}min")
C++
//! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time"); int64_t total_time{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for vehicle " << vehicle_id << ":"; std::ostringstream route; while (!routing.IsEnd(index)) { auto time_var = time_dimension.CumulVar(index); route << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ") -> "; index = solution.Value(routing.NextVar(index)); } auto time_var = time_dimension.CumulVar(index); LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ")"; LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min"; total_time += solution.Min(time_var); } LOG(INFO) << "Total time of all routes: " << total_time << "min"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; }
Java
/// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. RoutingDimension timeDimension = routing.getMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); String route = ""; while (!routing.isEnd(index)) { IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ") -> "; index = solution.value(routing.nextVar(index)); } IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ")"; logger.info(route); logger.info("Time of the route: " + solution.min(timeVar) + "min"); totalTime += solution.min(timeVar); } logger.info("Total time of all routes: " + totalTime + "min"); }
C#
/// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. RoutingDimension timeDimension = routing.GetMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); var index = routing.Start(i); while (routing.IsEnd(index) == false) { var timeVar = timeDimension.CumulVar(index); Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar), solution.Max(timeVar)); index = solution.Value(routing.NextVar(index)); } var endTimeVar = timeDimension.CumulVar(index); Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar), solution.Max(endTimeVar)); Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar)); totalTime += solution.Min(endTimeVar); } Console.WriteLine("Total time of all routes: {0}min", totalTime); }
Solusi ini menampilkan rute kendaraan, dan jendela solusi di setiap lokasi, seperti yang dijelaskan di bagian berikutnya.
Jendela solusi
Jendela solusi di suatu lokasi adalah interval waktu saat kendaraan harus tiba, agar tetap sesuai jadwal.Jendela solusi dimuat di—dan biasanya lebih kecil dari— periode waktu batasan di lokasi.
Dalam fungsi printer solusi di atas, jendela solusi ditampilkan oleh
(assignment.Min(time_var), assignment.Max(time_var)
, dengan
time_var = time_dimension.CumulVar(index)
adalah waktu perjalanan kumulatif kendaraan
di lokasi.
Jika nilai minimum dan maksimum time_var
sama, jendela
solusi adalah satu titik waktu, yang berarti kendaraan harus berangkat dari
lokasi segera setelah tiba. Di sisi lain, jika nilai minimumnya kurang dari
nilai maksimum, kendaraan dapat menunggu sebelum berangkat.
Bagian Menjalankan program menjelaskan jendela solusi untuk contoh ini.
Selesaikan
Fungsi utama contoh ini mirip dengan fungsi untuk contoh TSP.
Python
solution = routing.SolveWithParameters(search_parameters)
C++
const Assignment* solution = routing.SolveWithParameters(searchParameters);
Java
Assignment solution = routing.solveWithParameters(searchParameters);
C#
Assignment solution = routing.SolveWithParameters(searchParameters);
Menjalankan program
Saat Anda menjalankannya, program akan menampilkan output berikut:
Route for vehicle 0: 0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8) -> 16 Time(11,11) -> 0 Time(18,18) Time of the route: 18min Route for vehicle 1: 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24) Time of the route: 24min Route for vehicle 2: 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Route for vehicle 3: 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) -> 0 Time(20,20) Time of the route: 20min Total time of all routes: 82min
Untuk setiap lokasi di rute, Time(a,b)
adalah
jendela solusi: kendaraan yang mengunjungi lokasi harus
melakukannya dalam interval waktu tersebut agar tetap sesuai jadwal.
Sebagai contoh, lihat bagian rute berikut untuk kendaraan 0.
0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)
Di lokasi 9, jendela solusinya adalah Time(2,3)
, yang berarti kendaraan harus
tiba di sana antara waktu 2 dan 3. Perhatikan bahwa jendela solusi dimuat
dalam periode waktu batasan di lokasi tersebut, (0, 3)
, yang diberikan dalam
data masalah. Jendela solusi dimulai pada waktu 2 karena dibutuhkan 2 unit waktu (entri matriks waktu 0, 9) untuk berpindah dari depot ke lokasi 9.
Mengapa kendaraan dapat berangkat dari lokasi 9 kapan saja antara pukul 2 dan 3? Alasannya adalah karena waktu perjalanan dari lokasi 9 ke lokasi 14 adalah 3, jika kendaraan berangkat kapan saja sebelum pukul 3, kendaraan akan tiba di lokasi 14 sebelum waktu 6, yang terlalu awal untuk kunjungannya. Jadi, kendaraan harus menunggu di suatu tempat, misalnya, pengemudi dapat memutuskan untuk menunggu di lokasi 9 hingga waktu 3 tanpa menunda penyelesaian rute.
Anda mungkin telah memperhatikan bahwa beberapa jendela solusi (mis. di lokasi 9 dan 14) memiliki waktu mulai dan waktu berakhir yang berbeda, tetapi jendela yang lain (mis. pada rute 2 dan 3) memiliki waktu mulai dan waktu berakhir yang sama. Dalam kasus pertama, kendaraan dapat menunggu hingga ujung jendela sebelum berangkat, sedangkan dalam kasus kedua, kendaraan harus berangkat segera setelah tiba.
Menyimpan jendela solusi ke dalam daftar atau array
Bagian TSP menunjukkan cara menyimpan rute dalam solusi untuk daftar atau array. Untuk VRPTW, Anda juga dapat menyimpan jendela solusi. Fungsi di bawah ini menyimpan jendela solusi ke dalam daftar (Python) atau array (C++).
Python
def get_cumul_data(solution, routing, dimension): """Get cumulative data from a dimension and store it in an array.""" # Returns an array cumul_data whose i,j entry contains the minimum and # maximum of CumulVar for the dimension at the jth node on route : # - cumul_data[i][j][0] is the minimum. # - cumul_data[i][j][1] is the maximum. cumul_data = [] for route_nbr in range(routing.vehicles()): route_data = [] index = routing.Start(route_nbr) dim_var = dimension.CumulVar(index) route_data.append([solution.Min(dim_var), solution.Max(dim_var)]) while not routing.IsEnd(index): index = solution.Value(routing.NextVar(index)) dim_var = dimension.CumulVar(index) route_data.append([solution.Min(dim_var), solution.Max(dim_var)]) cumul_data.append(route_data) return cumul_data
C++
std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData( const Assignment& solution, const RoutingModel& routing, const RoutingDimension& dimension) { // Returns an array cumul_data, whose i, j entry is a pair containing // the minimum and maximum of CumulVar for the dimension.: // - cumul_data[i][j].first is the minimum. // - cumul_data[i][j].second is the maximum. std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data( routing.vehicles()); for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) { int64_t index = routing.Start(vehicle_id); IntVar* dim_var = dimension.CumulVar(index); cumul_data[vehicle_id].emplace_back(solution.Min(dim_var), solution.Max(dim_var)); while (!routing.IsEnd(index)) { index = solution.Value(routing.NextVar(index)); IntVar* dim_var = dimension.CumulVar(index); cumul_data[vehicle_id].emplace_back(solution.Min(dim_var), solution.Max(dim_var)); } } return cumul_data; }
Fungsi ini menyimpan nilai minimum dan maksimum data kumulatif untuk setiap dimensi (bukan hanya waktu).
Dalam contoh saat ini, nilai ini adalah batas bawah dan atas
jendela solusi, dan dimensi yang diteruskan ke fungsi adalah
time_dimension
.
Fungsi berikut mencetak solusi dari rute dan data kumulatif.
Python
def print_solution(routes, cumul_data): """Print the solution.""" total_time = 0 route_str = "" for i, route in enumerate(routes): route_str += "Route " + str(i) + ":\n" start_time = cumul_data[i][0][0] end_time = cumul_data[i][0][1] route_str += ( " " + str(route[0]) + " Time(" + str(start_time) + ", " + str(end_time) + ")" ) for j in range(1, len(route)): start_time = cumul_data[i][j][0] end_time = cumul_data[i][j][1] route_str += ( " -> " + str(route[j]) + " Time(" + str(start_time) + ", " + str(end_time) + ")" ) route_str += f"\n Route time: {start_time}min\n\n" total_time += cumul_data[i][len(route) - 1][0] route_str += f"Total time: {total_time}min" print(route_str)
C++
void PrintSolution( const std::vector<std::vector<int>> routes, std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) { int64_t total_time{0}; std::ostringstream route; for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) { route << "\nRoute " << vehicle_id << ": \n"; route << " " << routes[vehicle_id][0] << " Time(" << cumul_data[vehicle_id][0].first << ", " << cumul_data[vehicle_id][0].second << ") "; for (int j = 1; j < routes[vehicle_id].size(); ++j) { route << "-> " << routes[vehicle_id][j] << " Time(" << cumul_data[vehicle_id][j].first << ", " << cumul_data[vehicle_id][j].second << ") "; } route << "\n Route time: " << cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first << " minutes\n"; total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first; } route << "\nTotal travel time: " << total_time << " minutes"; LOG(INFO) << route.str(); }
Selesaikan program
Program lengkap untuk masalah pemilihan rute kendaraan dengan jendela waktu ditampilkan di bawah ini.
Python
"""Vehicles Routing Problem (VRP) with Time Windows.""" from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} data["time_matrix"] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data["time_windows"] = [ (0, 5), # depot (7, 12), # 1 (10, 15), # 2 (16, 18), # 3 (10, 13), # 4 (0, 5), # 5 (5, 10), # 6 (0, 4), # 7 (5, 10), # 8 (0, 3), # 9 (10, 16), # 10 (10, 15), # 11 (0, 5), # 12 (5, 10), # 13 (7, 8), # 14 (10, 15), # 15 (11, 15), # 16 ] data["num_vehicles"] = 4 data["depot"] = 0 return data def print_solution(data, manager, routing, solution): """Prints solution on console.""" print(f"Objective: {solution.ObjectiveValue()}") time_dimension = routing.GetDimensionOrDie("Time") total_time = 0 for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) plan_output = f"Route for vehicle {vehicle_id}:\n" while not routing.IsEnd(index): time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})" " -> " ) index = solution.Value(routing.NextVar(index)) time_var = time_dimension.CumulVar(index) plan_output += ( f"{manager.IndexToNode(index)}" f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n" ) plan_output += f"Time of the route: {solution.Min(time_var)}min\n" print(plan_output) total_time += solution.Min(time_var) print(f"Total time of all routes: {total_time}min") def main(): """Solve the VRP with time windows.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager( len(data["time_matrix"]), data["num_vehicles"], data["depot"] ) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) # Create and register a transit callback. def time_callback(from_index, to_index): """Returns the travel time between the two nodes.""" # Convert from routing variable Index to time matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return data["time_matrix"][from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(time_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Add Time Windows constraint. time = "Time" routing.AddDimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle False, # Don't force start cumul to zero. time, ) time_dimension = routing.GetDimensionOrDie(time) # Add time window constraints for each location except depot. for location_idx, time_window in enumerate(data["time_windows"]): if location_idx == data["depot"]: continue index = manager.NodeToIndex(location_idx) time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1]) # Add time window constraints for each vehicle start node. depot_idx = data["depot"] for vehicle_id in range(data["num_vehicles"]): index = routing.Start(vehicle_id) time_dimension.CumulVar(index).SetRange( data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1] ) # Instantiate route start and end times to produce feasible times. for i in range(data["num_vehicles"]): routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i)) ) routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i))) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC ) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(data, manager, routing, solution) if __name__ == "__main__": main()
C++
#include <cstdint> #include <sstream> #include <string> #include <utility> #include <vector> #include "ortools/constraint_solver/routing.h" #include "ortools/constraint_solver/routing_enums.pb.h" #include "ortools/constraint_solver/routing_index_manager.h" #include "ortools/constraint_solver/routing_parameters.h" namespace operations_research { struct DataModel { const std::vector<std::vector<int64_t>> time_matrix{ {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; const std::vector<std::pair<int64_t, int64_t>> time_windows{ {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; const int num_vehicles = 4; const RoutingIndexManager::NodeIndex depot{0}; }; //! @brief Print the solution. //! @param[in] data Data of the problem. //! @param[in] manager Index manager used. //! @param[in] routing Routing solver used. //! @param[in] solution Solution found by the solver. void PrintSolution(const DataModel& data, const RoutingIndexManager& manager, const RoutingModel& routing, const Assignment& solution) { const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time"); int64_t total_time{0}; for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) { int64_t index = routing.Start(vehicle_id); LOG(INFO) << "Route for vehicle " << vehicle_id << ":"; std::ostringstream route; while (!routing.IsEnd(index)) { auto time_var = time_dimension.CumulVar(index); route << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ") -> "; index = solution.Value(routing.NextVar(index)); } auto time_var = time_dimension.CumulVar(index); LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time(" << solution.Min(time_var) << ", " << solution.Max(time_var) << ")"; LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min"; total_time += solution.Min(time_var); } LOG(INFO) << "Total time of all routes: " << total_time << "min"; LOG(INFO) << ""; LOG(INFO) << "Advanced usage:"; LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms"; } void VrpTimeWindows() { // Instantiate the data problem. DataModel data; // Create Routing Index Manager RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles, data.depot); // Create Routing Model. RoutingModel routing(manager); // Create and register a transit callback. const int transit_callback_index = routing.RegisterTransitCallback( [&data, &manager](const int64_t from_index, const int64_t to_index) -> int64_t { // Convert from routing variable Index to time matrix NodeIndex. const int from_node = manager.IndexToNode(from_index).value(); const int to_node = manager.IndexToNode(to_index).value(); return data.time_matrix[from_node][to_node]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index); // Add Time constraint. const std::string time = "Time"; routing.AddDimension(transit_callback_index, // transit callback index int64_t{30}, // allow waiting time int64_t{30}, // maximum time per vehicle false, // Don't force start cumul to zero time); const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time); // Add time window constraints for each location except depot. for (int i = 1; i < data.time_windows.size(); ++i) { const int64_t index = manager.NodeToIndex(RoutingIndexManager::NodeIndex(i)); time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first, data.time_windows[i].second); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.num_vehicles; ++i) { const int64_t index = routing.Start(i); time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first, data.time_windows[0].second); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.num_vehicles; ++i) { routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer( time_dimension.CumulVar(routing.End(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters(); searchParameters.set_first_solution_strategy( FirstSolutionStrategy::PATH_CHEAPEST_ARC); // Solve the problem. const Assignment* solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, manager, routing, *solution); } } // namespace operations_research int main(int /*argc*/, char* /*argv*/[]) { operations_research::VrpTimeWindows(); return EXIT_SUCCESS; }
Java
package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.Assignment; import com.google.ortools.constraintsolver.FirstSolutionStrategy; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.RoutingDimension; import com.google.ortools.constraintsolver.RoutingIndexManager; import com.google.ortools.constraintsolver.RoutingModel; import com.google.ortools.constraintsolver.RoutingSearchParameters; import com.google.ortools.constraintsolver.main; import java.util.logging.Logger; /** VRPTW. */ public class VrpTimeWindows { private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName()); static class DataModel { public final long[][] timeMatrix = { {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7}, {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14}, {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9}, {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16}, {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14}, {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8}, {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5}, {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10}, {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6}, {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5}, {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4}, {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10}, {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8}, {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6}, {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2}, {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9}, {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0}, }; public final long[][] timeWindows = { {0, 5}, // depot {7, 12}, // 1 {10, 15}, // 2 {16, 18}, // 3 {10, 13}, // 4 {0, 5}, // 5 {5, 10}, // 6 {0, 4}, // 7 {5, 10}, // 8 {0, 3}, // 9 {10, 16}, // 10 {10, 15}, // 11 {0, 5}, // 12 {5, 10}, // 13 {7, 8}, // 14 {10, 15}, // 15 {11, 15}, // 16 }; public final int vehicleNumber = 4; public final int depot = 0; } /// @brief Print the solution. static void printSolution( DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) { // Solution cost. logger.info("Objective : " + solution.objectiveValue()); // Inspect solution. RoutingDimension timeDimension = routing.getMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); logger.info("Route for Vehicle " + i + ":"); String route = ""; while (!routing.isEnd(index)) { IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ") -> "; index = solution.value(routing.nextVar(index)); } IntVar timeVar = timeDimension.cumulVar(index); route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + "," + solution.max(timeVar) + ")"; logger.info(route); logger.info("Time of the route: " + solution.min(timeVar) + "min"); totalTime += solution.min(timeVar); } logger.info("Total time of all routes: " + totalTime + "min"); } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the data problem. final DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. final int transitCallbackIndex = routing.registerTransitCallback((long fromIndex, long toIndex) -> { // Convert from routing variable Index to user NodeIndex. int fromNode = manager.indexToNode(fromIndex); int toNode = manager.indexToNode(toIndex); return data.timeMatrix[fromNode][toNode]; }); // Define cost of each arc. routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Time constraint. routing.addDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.getMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.timeWindows.length; ++i) { long index = manager.nodeToIndex(i); timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.vehicleNumber; ++i) { long index = routing.start(i); timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.vehicleNumber; ++i) { routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i))); routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = main.defaultRoutingSearchParameters() .toBuilder() .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC) .build(); // Solve the problem. Assignment solution = routing.solveWithParameters(searchParameters); // Print solution on console. printSolution(data, routing, manager, solution); } } // [END_program_part1]
C#
using System; using System.Collections.Generic; using Google.OrTools.ConstraintSolver; /// <summary> /// Vehicles Routing Problem (VRP) with Time Windows. /// </summary> public class VrpTimeWindows { class DataModel { public long[,] TimeMatrix = { { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 }, { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 }, { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 }, { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 }, { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 }, { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 }, { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 }, { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 }, { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 }, { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 }, { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 }, { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 }, { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 }, { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 }, { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 }, { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 }, { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 }, }; public long[,] TimeWindows = { { 0, 5 }, // depot { 7, 12 }, // 1 { 10, 15 }, // 2 { 16, 18 }, // 3 { 10, 13 }, // 4 { 0, 5 }, // 5 { 5, 10 }, // 6 { 0, 4 }, // 7 { 5, 10 }, // 8 { 0, 3 }, // 9 { 10, 16 }, // 10 { 10, 15 }, // 11 { 0, 5 }, // 12 { 5, 10 }, // 13 { 7, 8 }, // 14 { 10, 15 }, // 15 { 11, 15 }, // 16 }; public int VehicleNumber = 4; public int Depot = 0; }; /// <summary> /// Print the solution. /// </summary> static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager, in Assignment solution) { Console.WriteLine($"Objective {solution.ObjectiveValue()}:"); // Inspect solution. RoutingDimension timeDimension = routing.GetMutableDimension("Time"); long totalTime = 0; for (int i = 0; i < data.VehicleNumber; ++i) { Console.WriteLine("Route for Vehicle {0}:", i); var index = routing.Start(i); while (routing.IsEnd(index) == false) { var timeVar = timeDimension.CumulVar(index); Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar), solution.Max(timeVar)); index = solution.Value(routing.NextVar(index)); } var endTimeVar = timeDimension.CumulVar(index); Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar), solution.Max(endTimeVar)); Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar)); totalTime += solution.Min(endTimeVar); } Console.WriteLine("Total time of all routes: {0}min", totalTime); } public static void Main(String[] args) { // Instantiate the data problem. DataModel data = new DataModel(); // Create Routing Index Manager RoutingIndexManager manager = new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot); // Create Routing Model. RoutingModel routing = new RoutingModel(manager); // Create and register a transit callback. int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) => { // Convert from routing variable Index to time // matrix NodeIndex. var fromNode = manager.IndexToNode(fromIndex); var toNode = manager.IndexToNode(toIndex); return data.TimeMatrix[fromNode, toNode]; }); // Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex); // Add Time constraint. routing.AddDimension(transitCallbackIndex, // transit callback 30, // allow waiting time 30, // vehicle maximum capacities false, // start cumul to zero "Time"); RoutingDimension timeDimension = routing.GetMutableDimension("Time"); // Add time window constraints for each location except depot. for (int i = 1; i < data.TimeWindows.GetLength(0); ++i) { long index = manager.NodeToIndex(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]); } // Add time window constraints for each vehicle start node. for (int i = 0; i < data.VehicleNumber; ++i) { long index = routing.Start(i); timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]); } // Instantiate route start and end times to produce feasible times. for (int i = 0; i < data.VehicleNumber; ++i) { routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i))); routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i))); } // Setting first solution heuristic. RoutingSearchParameters searchParameters = operations_research_constraint_solver.DefaultRoutingSearchParameters(); searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc; // Solve the problem. Assignment solution = routing.SolveWithParameters(searchParameters); // Print solution on console. PrintSolution(data, routing, manager, solution); } }