Zaman Pencereleriyle Araç Rota Sorunu

Birçok araç rota izleme sorunu, yalnızca belirli zaman aralıklarında hizmet veren müşterilere yapılacak ziyaretler için zaman planlaması yapmayı içerir.

Bu problemler, zaman aralıklı araç yönlendirme sorunları (VRPTW) olarak bilinir.

VRPTW Örneği

Bu sayfada, bir VRPTW'nin nasıl çözüleceğini gösteren bir örnek üzerinden ilerleyeceğiz. Problem zaman aralıklarıyla ilgili olduğundan veriler, önceki örneklerde olduğu gibi bir mesafe matrisi yerine konumlar arasındaki seyahat sürelerini içeren bir zaman matrisi içerir.

Aşağıdaki şemada ziyaret edilecek yerler mavi, depo ise siyah renkle gösterilmektedir. Zaman aralıkları her bir konumun üstünde gösterilir. Konumların nasıl tanımlandığı hakkında daha ayrıntılı bilgi için VRP bölümündeki Konum koordinatları konusuna bakın.

Amaç, araçların toplam seyahat süresini en aza indirmektir.

VRPTW örneğini VEYA araçlarıyla çözme

Aşağıdaki bölümlerde, VRPTW örneğinin VEYA Araçları ile nasıl çözüleceği açıklanmaktadır.

Verileri oluşturun

Aşağıdaki işlev sorun için veri oluşturur.

Python

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (16, 18),  # 3
        (10, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 4),  # 7
        (5, 10),  # 8
        (0, 3),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 8),  # 14
        (10, 15),  # 15
        (11, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data
Veriler şunlardan oluşur:
  • data['time_matrix']: Konumlar arasındaki seyahat süreleri dizisi. Bunun, mesafe matrisi kullanılan önceki örneklerden farklı olduğunu unutmayın. Tüm araçlar aynı hızda giderse mesafe matrisi veya zaman matrisi kullanırsanız seyahat mesafeleri seyahat sürelerinin sabit bir katı olduğundan aynı çözümü elde edersiniz.
  • data['time_windows']: Bir ziyaret için istenen zamanlar olarak düşünebileceğiniz, konumlara ait zaman aralıkları dizisi. Araçlar, belirtilen zaman aralığı içinde bir konumu ziyaret etmelidir.
  • data['num_vehicles']: Filodaki araç sayısı.
  • data['depot']: Deponun dizini.

C++

struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {16, 18},  // 3
      {10, 13},  // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 4},    // 7
      {5, 10},   // 8
      {0, 3},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 8},    // 14
      {10, 15},  // 15
      {11, 15},  // 16
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};
Veriler şunlardan oluşur:
  • time_matrix: Konumlar arasındaki seyahat süreleri dizisi. Bunun, mesafe matrisi kullanılan önceki örneklerden farklı olduğunu unutmayın. Tüm araçlar aynı hızda giderse mesafe matrisi veya zaman matrisi kullanırsanız seyahat mesafeleri seyahat sürelerinin sabit bir katı olduğundan aynı çözümü elde edersiniz.
  • time_windows: Bir ziyaret için istenen zamanlar olarak düşünebileceğiniz, konumlara ait zaman aralıkları dizisi. Araçlar, belirtilen zaman aralığı içinde bir konumu ziyaret etmelidir.
  • num_vehicles: Filodaki araç sayısı.
  • depot: Deponun dizini.

Java

static class DataModel {
  public final long[][] timeMatrix = {
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  public final long[][] timeWindows = {
      {0, 5}, // depot
      {7, 12}, // 1
      {10, 15}, // 2
      {16, 18}, // 3
      {10, 13}, // 4
      {0, 5}, // 5
      {5, 10}, // 6
      {0, 4}, // 7
      {5, 10}, // 8
      {0, 3}, // 9
      {10, 16}, // 10
      {10, 15}, // 11
      {0, 5}, // 12
      {5, 10}, // 13
      {7, 8}, // 14
      {10, 15}, // 15
      {11, 15}, // 16
  };
  public final int vehicleNumber = 4;
  public final int depot = 0;
}
Veriler şunlardan oluşur:
  • timeMatrix: Konumlar arasındaki seyahat süreleri dizisi. Bunun, mesafe matrisi kullanılan önceki örneklerden farklı olduğunu unutmayın. Tüm araçlar aynı hızda giderse mesafe matrisi veya zaman matrisi kullanırsanız seyahat mesafeleri seyahat sürelerinin sabit bir katı olduğundan aynı çözümü elde edersiniz.
  • timeWindows: Bir ziyaret için istenen zamanlar olarak düşünebileceğiniz, konumlara ait zaman aralıkları dizisi. Araçlar, belirtilen zaman aralığı içinde bir konumu ziyaret etmelidir.
  • vehicleNumber: Filodaki araç sayısı.
  • depot: Deponun dizini.

C#

class DataModel
{
    public long[,] TimeMatrix = {
        { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
        { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
        { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
        { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
        { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
        { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
        { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
        { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
        { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
        { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
        { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
        { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
        { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
        { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
        { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
        { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
        { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
    };
    public long[,] TimeWindows = {
        { 0, 5 },   // depot
        { 7, 12 },  // 1
        { 10, 15 }, // 2
        { 16, 18 }, // 3
        { 10, 13 }, // 4
        { 0, 5 },   // 5
        { 5, 10 },  // 6
        { 0, 4 },   // 7
        { 5, 10 },  // 8
        { 0, 3 },   // 9
        { 10, 16 }, // 10
        { 10, 15 }, // 11
        { 0, 5 },   // 12
        { 5, 10 },  // 13
        { 7, 8 },   // 14
        { 10, 15 }, // 15
        { 11, 15 }, // 16
    };
    public int VehicleNumber = 4;
    public int Depot = 0;
};
Veriler şunlardan oluşur:
  • TimeMatrix: Konumlar arasındaki seyahat süreleri dizisi. Bunun, mesafe matrisi kullanılan önceki örneklerden farklı olduğunu unutmayın. Tüm araçlar aynı hızda giderse mesafe matrisi veya zaman matrisi kullanırsanız seyahat mesafeleri seyahat sürelerinin sabit bir katı olduğundan aynı çözümü elde edersiniz.
  • TimeWindows: Bir ziyaret için istenen zamanlar olarak düşünebileceğiniz, konumlara ait zaman aralıkları dizisi. Araçlar, belirtilen zaman aralığı içinde bir konumu ziyaret etmelidir.
  • VehicleNumber: Filodaki araç sayısı.
  • Depot: Deponun dizini.

Zamanı geri arama

Aşağıdaki işlev zaman geri çağırmasını oluşturur ve çözücüye aktarır. Ayrıca seyahat maliyetini tanımlayan yayın maliyetlerini de konumlar arasındaki seyahat süreleri olarak ayarlar.

Python

def time_callback(from_index, to_index):
    """Returns the travel time between the two nodes."""
    # Convert from routing variable Index to time matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data["time_matrix"][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(time_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

C++

const int transit_callback_index = routing.RegisterTransitCallback(
    [&data, &manager](const int64_t from_index,
                      const int64_t to_index) -> int64_t {
      // Convert from routing variable Index to time matrix NodeIndex.
      const int from_node = manager.IndexToNode(from_index).value();
      const int to_node = manager.IndexToNode(to_index).value();
      return data.time_matrix[from_node][to_node];
    });
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

Java

final int transitCallbackIndex =
    routing.registerTransitCallback((long fromIndex, long toIndex) -> {
      // Convert from routing variable Index to user NodeIndex.
      int fromNode = manager.indexToNode(fromIndex);
      int toNode = manager.indexToNode(toIndex);
      return data.timeMatrix[fromNode][toNode];
    });
routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

C#

int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                           {
                                                               // Convert from routing variable Index to time
                                                               // matrix NodeIndex.
                                                               var fromNode = manager.IndexToNode(fromIndex);
                                                               var toNode = manager.IndexToNode(toIndex);
                                                               return data.TimeMatrix[fromNode, toNode];
                                                           });
routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

Zaman aralığı kısıtlamaları ekleme

Aşağıdaki kod, tüm konumlar için zaman aralığı kısıtlamaları ekler.

Python

time = "Time"
routing.AddDimension(
    transit_callback_index,
    30,  # allow waiting time
    30,  # maximum time per vehicle
    False,  # Don't force start cumul to zero.
    time,
)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data["time_windows"]):
    if location_idx == data["depot"]:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
depot_idx = data["depot"]
for vehicle_id in range(data["num_vehicles"]):
    index = routing.Start(vehicle_id)
    time_dimension.CumulVar(index).SetRange(
        data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
    )
for i in range(data["num_vehicles"]):
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i))
    )
    routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

C++

const std::string time = "Time";
routing.AddDimension(transit_callback_index,  // transit callback index
                     int64_t{30},             // allow waiting time
                     int64_t{30},             // maximum time per vehicle
                     false,  // Don't force start cumul to zero
                     time);
const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
// Add time window constraints for each location except depot.
for (int i = 1; i < data.time_windows.size(); ++i) {
  const int64_t index =
      manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
  time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                           data.time_windows[i].second);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.num_vehicles; ++i) {
  const int64_t index = routing.Start(i);
  time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                           data.time_windows[0].second);
}
for (int i = 0; i < data.num_vehicles; ++i) {
  routing.AddVariableMinimizedByFinalizer(
      time_dimension.CumulVar(routing.Start(i)));
  routing.AddVariableMinimizedByFinalizer(
      time_dimension.CumulVar(routing.End(i)));
}

Java

routing.addDimension(transitCallbackIndex, // transit callback
    30, // allow waiting time
    30, // vehicle maximum capacities
    false, // start cumul to zero
    "Time");
RoutingDimension timeDimension = routing.getMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.timeWindows.length; ++i) {
  long index = manager.nodeToIndex(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.vehicleNumber; ++i) {
  long index = routing.start(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
}
for (int i = 0; i < data.vehicleNumber; ++i) {
  routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
  routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
}

C#

routing.AddDimension(transitCallbackIndex, // transit callback
                     30,                   // allow waiting time
                     30,                   // vehicle maximum capacities
                     false,                // start cumul to zero
                     "Time");
RoutingDimension timeDimension = routing.GetMutableDimension("Time");
// Add time window constraints for each location except depot.
for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
    long index = manager.NodeToIndex(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}
// Add time window constraints for each vehicle start node.
for (int i = 0; i < data.VehicleNumber; ++i)
{
    long index = routing.Start(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
}
for (int i = 0; i < data.VehicleNumber; ++i)
{
    routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
}

Bu kod, önceki örneklerde verilen seyahat mesafesi veya taleplerin boyutlarına benzer şekilde, araçların seyahat süresi için bir boyut oluşturur. Boyutlar, bir taşıtın rotasında biriken miktarları takip eder. Yukarıdaki kodda time_dimension.CumulVar(index), bir araç belirtilen index ile konuma vardığında kümülatif seyahat süresidir.

Boyut, aşağıdaki bağımsız değişkenleri içeren AddDimension yöntemi kullanılarak oluşturulur:

  • Seyahat süresi geri çağırma dizini: transit_callback_index
  • Slack için üst sınır (konumlardaki bekleme süreleri): 30. CVRP örneğinde bu değer 0 olarak ayarlanmış olsa da VRPTW'nin zaman aralığı kısıtlamaları nedeniyle pozitif bekleme süresine izin vermesi gerekir.
  • Her bir aracın rotası üzerinde toplam süre için bir üst sınır: 30
  • Her araç rotasının başlangıcında kümülatif değişkenin sıfıra ayarlanıp ayarlanmadığını belirten bir boole değişkeni.
  • Boyutun adı.

Sonraki satırlarda

Python

for location_idx, time_window in enumerate(data["time_windows"]):
    if location_idx == data["depot"]:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])

C++

for (int i = 1; i < data.time_windows.size(); ++i) {
  const int64_t index =
      manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
  time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                           data.time_windows[i].second);
}

Java

for (int i = 1; i < data.timeWindows.length; ++i) {
  long index = manager.nodeToIndex(i);
  timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
}

C#

for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
{
    long index = manager.NodeToIndex(i);
    timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
}

bir aracın, konumun zaman aralığı içinde bir konumu ziyaret etmesini zorunlu tutmalıdır.

Arama parametrelerini ayarlama

Aşağıdaki kod, ilk çözümü bulmak için varsayılan arama parametrelerini ve bulgusal bir yöntemi belirler:

Python

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
    routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
)

C++

RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
searchParameters.set_first_solution_strategy(
    FirstSolutionStrategy::PATH_CHEAPEST_ARC);

Java

RoutingSearchParameters searchParameters =
    main.defaultRoutingSearchParameters()
        .toBuilder()
        .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
        .build();

C#

RoutingSearchParameters searchParameters =
    operations_research_constraint_solver.DefaultRoutingSearchParameters();
searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

Çözüm yazıcısını ekleyin

Çözümü gösteren fonksiyon aşağıda gösterilmiştir.

Python

def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")

C++

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

Java

/// @brief Print the solution.
static void printSolution(
    DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
  // Solution cost.
  logger.info("Objective : " + solution.objectiveValue());
  // Inspect solution.
  RoutingDimension timeDimension = routing.getMutableDimension("Time");
  long totalTime = 0;
  for (int i = 0; i < data.vehicleNumber; ++i) {
    long index = routing.start(i);
    logger.info("Route for Vehicle " + i + ":");
    String route = "";
    while (!routing.isEnd(index)) {
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ") -> ";
      index = solution.value(routing.nextVar(index));
    }
    IntVar timeVar = timeDimension.cumulVar(index);
    route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
        + solution.max(timeVar) + ")";
    logger.info(route);
    logger.info("Time of the route: " + solution.min(timeVar) + "min");
    totalTime += solution.min(timeVar);
  }
  logger.info("Total time of all routes: " + totalTime + "min");
}

C#

/// <summary>
///   Print the solution.
/// </summary>
static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                          in Assignment solution)
{
    Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

    // Inspect solution.
    RoutingDimension timeDimension = routing.GetMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.VehicleNumber; ++i)
    {
        Console.WriteLine("Route for Vehicle {0}:", i);
        var index = routing.Start(i);
        while (routing.IsEnd(index) == false)
        {
            var timeVar = timeDimension.CumulVar(index);
            Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                          solution.Max(timeVar));
            index = solution.Value(routing.NextVar(index));
        }
        var endTimeVar = timeDimension.CumulVar(index);
        Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                          solution.Max(endTimeVar));
        Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
        totalTime += solution.Min(endTimeVar);
    }
    Console.WriteLine("Total time of all routes: {0}min", totalTime);
}

Çözüm, sonraki bölümde açıklandığı gibi her konumda araç rotalarını ve çözüm penceresini gösterir.

Çözüm pencereleri

Bir konumdaki çözüm aralığı, zaman çizelgesine bağlı kalmak için bir aracın gelmesi gereken zaman aralığıdır.Çözüm aralığı, konumdaki kısıtlı zaman aralığı içindedir ve genellikle bu zaman aralığından daha kısadır.

Yukarıdaki çözüm yazıcı işlevinde, çözüm aralığı (assignment.Min(time_var), assignment.Max(time_var) tarafından döndürülür. Burada time_var = time_dimension.CumulVar(index), aracın ilgili konumdaki kümülatif seyahat süresidir.

time_var özelliğinin minimum ve maksimum değerleri aynıysa çözüm aralığı tek bir zaman noktasındadır. Bu nedenle, aracın gelir gelmez konumdan ayrılması gerekir. Öte yandan, minimum değer maksimum değerden düşükse araç yola çıkmadan önce bekleyebilir.

Programı çalıştırma bölümünde, bu örnekle ilgili çözüm pencereleri açıklanmaktadır.

Çözümden bahsedin

Bu örnekteki ana işlev, TSP örneğindeki işleve benzer.

Python

solution = routing.SolveWithParameters(search_parameters)

C++

const Assignment* solution = routing.SolveWithParameters(searchParameters);

Java

Assignment solution = routing.solveWithParameters(searchParameters);

C#

Assignment solution = routing.SolveWithParameters(searchParameters);

Programı yürütme

Programı çalıştırdığınızda aşağıdaki çıkış görüntülenir:

Route for vehicle 0:
 0 Time(0,0) ->  9 Time(2,3) ->  14 Time(7,8) -> 16 Time(11,11) ->  0 Time(18,18)
Time of the route: 18min

Route for vehicle 1:
 0 Time(0,0) -> 7 Time(2,4) -> 1 Time(7,11) -> 4 Time(10,13) -> 3 Time(16,16) -> 0 Time(24,24)
Time of the route: 24min

Route for vehicle 2:
 0 Time(0,0) -> 12 Time(4,4) -> 13 Time(6,6) -> 15 Time(11,11) -> 11 Time(14,14) -> 0 Time(20,20)
Time of the route: 20min

Route for vehicle 3:
 0 Time(0,0) -> 5 Time(3,3) -> 8 Time(5,5) -> 6 Time(7,7) -> 2 Time(10,10) -> 10 Time(14,14) ->
 0 Time(20,20)
Time of the route: 20min

Total time of all routes: 82min

Bir rotadaki her konum için Time(a,b) çözüm aralığıdır: Konumu ziyaret eden araç, zaman çizelgesine bağlı kalmak için bu işlemi söz konusu zaman aralığında yapmalıdır.

Örneğin, 0. araç için rotanın aşağıdaki bölümüne bakın.

0 Time(0,0) -> 9 Time(2,3) -> 14 Time(7,8)

9. konumdaki çözüm penceresi Time(2,3) şeklindedir yani aracın 2 ile 3. zaman arasında varması gerekir. Çözüm aralığının, sorun verilerinde belirtilen ilgili konumdaki kısıtlama zaman aralığında ((0,&nbsp;3)) yer aldığını unutmayın. Çözüm aralığı, 2. zamanda başlar çünkü depodan 9. konuma ulaşmak için 2 zaman birimi (zaman matrisinin 0, 9 girişi) gerekir.

Araç neden 2 ile 3 arasında herhangi bir zamanda 9. konumdan hareket edebiliyor? Bunun nedeni, 9. konumdan 14. konuma seyahat süresi 3 olduğundan, araç 3'ten önce herhangi bir zamanda yola çıkarsa 6. saatten önce 14. konuma varır. Bu da ziyaret için çok erken olur. Bu durumda, aracın bir yerde beklemesi gerekir. Örneğin, sürücü rotanın tamamlanmasını geciktirmeden 3. zamana kadar 9. konumda beklemeye karar verebilir.

Bazı çözüm zamanlarının (ör. 9 ve 14. konumlarda) farklı başlangıç ve bitiş zamanlarına sahipken (ör. 2 ve 3 numaralı rotalarda) başlangıç ve bitiş zamanlarının aynı olduğunu fark etmiş olabilirsiniz. İlk durumda araçlar yola çıkmadan önce pencerenin sonuna kadar bekleyebilir vaziyetteyken araçların vardıkları anda yola çıkmaları gerekir.

Çözüm pencerelerini bir listeye veya diziye kaydetme

TSP bölümünde, rotaların bir çözüme veya diziye nasıl kaydedileceği gösterilmektedir. VRPTW için çözüm pencerelerini de kaydedebilirsiniz. Aşağıdaki işlevler, çözüm pencerelerini bir listeye (Python) veya diziye (C++) kaydeder.

Python

def get_cumul_data(solution, routing, dimension):
  """Get cumulative data from a dimension and store it in an array."""
  # Returns an array cumul_data whose i,j entry contains the minimum and
  # maximum of CumulVar for the dimension at the jth node on route :
  # - cumul_data[i][j][0] is the minimum.
  # - cumul_data[i][j][1] is the maximum.

  cumul_data = []
  for route_nbr in range(routing.vehicles()):
    route_data = []
    index = routing.Start(route_nbr)
    dim_var = dimension.CumulVar(index)
    route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
    while not routing.IsEnd(index):
      index = solution.Value(routing.NextVar(index))
      dim_var = dimension.CumulVar(index)
      route_data.append([solution.Min(dim_var), solution.Max(dim_var)])
    cumul_data.append(route_data)
  return cumul_data

C++

std::vector<std::vector<std::pair<int64_t, int64_t>>> GetCumulData(
    const Assignment& solution, const RoutingModel& routing,
    const RoutingDimension& dimension) {
  // Returns an array cumul_data, whose i, j entry is a pair containing
  // the minimum and maximum of CumulVar for the dimension.:
  // - cumul_data[i][j].first is the minimum.
  // - cumul_data[i][j].second is the maximum.
  std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data(
      routing.vehicles());

  for (int vehicle_id = 0; vehicle_id < routing.vehicles(); ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    IntVar* dim_var = dimension.CumulVar(index);
    cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
                                        solution.Max(dim_var));
    while (!routing.IsEnd(index)) {
      index = solution.Value(routing.NextVar(index));
      IntVar* dim_var = dimension.CumulVar(index);
      cumul_data[vehicle_id].emplace_back(solution.Min(dim_var),
                                          solution.Max(dim_var));
    }
  }
  return cumul_data;
}

İşlevler, herhangi bir boyut için (yalnızca zaman için değil) kümülatif verilerin minimum ve maksimum değerlerini kaydeder. Bu örnekte, bu değerler çözüm aralığının alt ve üst sınırlarıdır ve işleve iletilen boyut time_dimension şeklindedir.

Aşağıdaki işlevler, çözümü rotalardan ve kümülatif verilerden yazdırır.

Python

def print_solution(routes, cumul_data):
  """Print the solution."""
  total_time = 0
  route_str = ""
  for i, route in enumerate(routes):
    route_str += "Route " + str(i) + ":\n"
    start_time = cumul_data[i][0][0]
    end_time = cumul_data[i][0][1]
    route_str += (
        "  "
        + str(route[0])
        + " Time("
        + str(start_time)
        + ", "
        + str(end_time)
        + ")"
    )
    for j in range(1, len(route)):
      start_time = cumul_data[i][j][0]
      end_time = cumul_data[i][j][1]
      route_str += (
          " -> "
          + str(route[j])
          + " Time("
          + str(start_time)
          + ", "
          + str(end_time)
          + ")"
      )
    route_str += f"\n  Route time: {start_time}min\n\n"
    total_time += cumul_data[i][len(route) - 1][0]
  route_str += f"Total time: {total_time}min"
  print(route_str)

C++

void PrintSolution(
    const std::vector<std::vector<int>> routes,
    std::vector<std::vector<std::pair<int64_t, int64_t>>> cumul_data) {
  int64_t total_time{0};
  std::ostringstream route;
  for (int vehicle_id = 0; vehicle_id < routes.size(); ++vehicle_id) {
    route << "\nRoute " << vehicle_id << ": \n";

    route << "  " << routes[vehicle_id][0] << " Time("
          << cumul_data[vehicle_id][0].first << ", "
          << cumul_data[vehicle_id][0].second << ") ";
    for (int j = 1; j < routes[vehicle_id].size(); ++j) {
      route << "-> " << routes[vehicle_id][j] << " Time("
            << cumul_data[vehicle_id][j].first << ", "
            << cumul_data[vehicle_id][j].second << ") ";
    }
    route << "\n  Route time: "
          << cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first
          << " minutes\n";

    total_time += cumul_data[vehicle_id][routes[vehicle_id].size() - 1].first;
  }
  route << "\nTotal travel time: " << total_time << " minutes";
  LOG(INFO) << route.str();
}

Programları tamamlayın

Zaman aralıkları olan araç rota izleme problemiyle ilgili programların tamamı aşağıda gösterilmiştir.

Python

"""Vehicles Routing Problem (VRP) with Time Windows."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data["time_matrix"] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data["time_windows"] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (16, 18),  # 3
        (10, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 4),  # 7
        (5, 10),  # 8
        (0, 3),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 8),  # 14
        (10, 15),  # 15
        (11, 15),  # 16
    ]
    data["num_vehicles"] = 4
    data["depot"] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f"Objective: {solution.ObjectiveValue()}")
    time_dimension = routing.GetDimensionOrDie("Time")
    total_time = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = f"Route for vehicle {vehicle_id}:\n"
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += (
                f"{manager.IndexToNode(index)}"
                f" Time({solution.Min(time_var)},{solution.Max(time_var)})"
                " -> "
            )
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += (
            f"{manager.IndexToNode(index)}"
            f" Time({solution.Min(time_var)},{solution.Max(time_var)})\n"
        )
        plan_output += f"Time of the route: {solution.Min(time_var)}min\n"
        print(plan_output)
        total_time += solution.Min(time_var)
    print(f"Total time of all routes: {total_time}min")


def main():
    """Solve the VRP with time windows."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(
        len(data["time_matrix"]), data["num_vehicles"], data["depot"]
    )

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def time_callback(from_index, to_index):
        """Returns the travel time between the two nodes."""
        # Convert from routing variable Index to time matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data["time_matrix"][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(time_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Time Windows constraint.
    time = "Time"
    routing.AddDimension(
        transit_callback_index,
        30,  # allow waiting time
        30,  # maximum time per vehicle
        False,  # Don't force start cumul to zero.
        time,
    )
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot.
    for location_idx, time_window in enumerate(data["time_windows"]):
        if location_idx == data["depot"]:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
    # Add time window constraints for each vehicle start node.
    depot_idx = data["depot"]
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(
            data["time_windows"][depot_idx][0], data["time_windows"][depot_idx][1]
        )

    # Instantiate route start and end times to produce feasible times.
    for i in range(data["num_vehicles"]):
        routing.AddVariableMinimizedByFinalizer(
            time_dimension.CumulVar(routing.Start(i))
        )
        routing.AddVariableMinimizedByFinalizer(time_dimension.CumulVar(routing.End(i)))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
    )

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == "__main__":
    main()

C++

#include <cstdint>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "ortools/constraint_solver/routing.h"
#include "ortools/constraint_solver/routing_enums.pb.h"
#include "ortools/constraint_solver/routing_index_manager.h"
#include "ortools/constraint_solver/routing_parameters.h"

namespace operations_research {
struct DataModel {
  const std::vector<std::vector<int64_t>> time_matrix{
      {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
      {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
      {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
      {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
      {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
      {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
      {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
      {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
      {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
      {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
      {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
      {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
      {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
      {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
      {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
      {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
      {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
  };
  const std::vector<std::pair<int64_t, int64_t>> time_windows{
      {0, 5},    // depot
      {7, 12},   // 1
      {10, 15},  // 2
      {16, 18},  // 3
      {10, 13},  // 4
      {0, 5},    // 5
      {5, 10},   // 6
      {0, 4},    // 7
      {5, 10},   // 8
      {0, 3},    // 9
      {10, 16},  // 10
      {10, 15},  // 11
      {0, 5},    // 12
      {5, 10},   // 13
      {7, 8},    // 14
      {10, 15},  // 15
      {11, 15},  // 16
  };
  const int num_vehicles = 4;
  const RoutingIndexManager::NodeIndex depot{0};
};

//! @brief Print the solution.
//! @param[in] data Data of the problem.
//! @param[in] manager Index manager used.
//! @param[in] routing Routing solver used.
//! @param[in] solution Solution found by the solver.
void PrintSolution(const DataModel& data, const RoutingIndexManager& manager,
                   const RoutingModel& routing, const Assignment& solution) {
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie("Time");
  int64_t total_time{0};
  for (int vehicle_id = 0; vehicle_id < data.num_vehicles; ++vehicle_id) {
    int64_t index = routing.Start(vehicle_id);
    LOG(INFO) << "Route for vehicle " << vehicle_id << ":";
    std::ostringstream route;
    while (!routing.IsEnd(index)) {
      auto time_var = time_dimension.CumulVar(index);
      route << manager.IndexToNode(index).value() << " Time("
            << solution.Min(time_var) << ", " << solution.Max(time_var)
            << ") -> ";
      index = solution.Value(routing.NextVar(index));
    }
    auto time_var = time_dimension.CumulVar(index);
    LOG(INFO) << route.str() << manager.IndexToNode(index).value() << " Time("
              << solution.Min(time_var) << ", " << solution.Max(time_var)
              << ")";
    LOG(INFO) << "Time of the route: " << solution.Min(time_var) << "min";
    total_time += solution.Min(time_var);
  }
  LOG(INFO) << "Total time of all routes: " << total_time << "min";
  LOG(INFO) << "";
  LOG(INFO) << "Advanced usage:";
  LOG(INFO) << "Problem solved in " << routing.solver()->wall_time() << "ms";
}

void VrpTimeWindows() {
  // Instantiate the data problem.
  DataModel data;

  // Create Routing Index Manager
  RoutingIndexManager manager(data.time_matrix.size(), data.num_vehicles,
                              data.depot);

  // Create Routing Model.
  RoutingModel routing(manager);

  // Create and register a transit callback.
  const int transit_callback_index = routing.RegisterTransitCallback(
      [&data, &manager](const int64_t from_index,
                        const int64_t to_index) -> int64_t {
        // Convert from routing variable Index to time matrix NodeIndex.
        const int from_node = manager.IndexToNode(from_index).value();
        const int to_node = manager.IndexToNode(to_index).value();
        return data.time_matrix[from_node][to_node];
      });

  // Define cost of each arc.
  routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index);

  // Add Time constraint.
  const std::string time = "Time";
  routing.AddDimension(transit_callback_index,  // transit callback index
                       int64_t{30},             // allow waiting time
                       int64_t{30},             // maximum time per vehicle
                       false,  // Don't force start cumul to zero
                       time);
  const RoutingDimension& time_dimension = routing.GetDimensionOrDie(time);
  // Add time window constraints for each location except depot.
  for (int i = 1; i < data.time_windows.size(); ++i) {
    const int64_t index =
        manager.NodeToIndex(RoutingIndexManager::NodeIndex(i));
    time_dimension.CumulVar(index)->SetRange(data.time_windows[i].first,
                                             data.time_windows[i].second);
  }
  // Add time window constraints for each vehicle start node.
  for (int i = 0; i < data.num_vehicles; ++i) {
    const int64_t index = routing.Start(i);
    time_dimension.CumulVar(index)->SetRange(data.time_windows[0].first,
                                             data.time_windows[0].second);
  }

  // Instantiate route start and end times to produce feasible times.
  for (int i = 0; i < data.num_vehicles; ++i) {
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)));
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)));
  }

  // Setting first solution heuristic.
  RoutingSearchParameters searchParameters = DefaultRoutingSearchParameters();
  searchParameters.set_first_solution_strategy(
      FirstSolutionStrategy::PATH_CHEAPEST_ARC);

  // Solve the problem.
  const Assignment* solution = routing.SolveWithParameters(searchParameters);

  // Print solution on console.
  PrintSolution(data, manager, routing, *solution);
}
}  // namespace operations_research

int main(int /*argc*/, char* /*argv*/[]) {
  operations_research::VrpTimeWindows();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.Assignment;
import com.google.ortools.constraintsolver.FirstSolutionStrategy;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.RoutingDimension;
import com.google.ortools.constraintsolver.RoutingIndexManager;
import com.google.ortools.constraintsolver.RoutingModel;
import com.google.ortools.constraintsolver.RoutingSearchParameters;
import com.google.ortools.constraintsolver.main;
import java.util.logging.Logger;

/** VRPTW. */
public class VrpTimeWindows {
  private static final Logger logger = Logger.getLogger(VrpTimeWindows.class.getName());
  static class DataModel {
    public final long[][] timeMatrix = {
        {0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7},
        {6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14},
        {9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9},
        {8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16},
        {7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14},
        {3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8},
        {6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5},
        {2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10},
        {3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6},
        {2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5},
        {6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4},
        {6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10},
        {4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8},
        {4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6},
        {5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2},
        {9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9},
        {7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0},
    };
    public final long[][] timeWindows = {
        {0, 5}, // depot
        {7, 12}, // 1
        {10, 15}, // 2
        {16, 18}, // 3
        {10, 13}, // 4
        {0, 5}, // 5
        {5, 10}, // 6
        {0, 4}, // 7
        {5, 10}, // 8
        {0, 3}, // 9
        {10, 16}, // 10
        {10, 15}, // 11
        {0, 5}, // 12
        {5, 10}, // 13
        {7, 8}, // 14
        {10, 15}, // 15
        {11, 15}, // 16
    };
    public final int vehicleNumber = 4;
    public final int depot = 0;
  }

  /// @brief Print the solution.
  static void printSolution(
      DataModel data, RoutingModel routing, RoutingIndexManager manager, Assignment solution) {
    // Solution cost.
    logger.info("Objective : " + solution.objectiveValue());
    // Inspect solution.
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    long totalTime = 0;
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      logger.info("Route for Vehicle " + i + ":");
      String route = "";
      while (!routing.isEnd(index)) {
        IntVar timeVar = timeDimension.cumulVar(index);
        route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
            + solution.max(timeVar) + ") -> ";
        index = solution.value(routing.nextVar(index));
      }
      IntVar timeVar = timeDimension.cumulVar(index);
      route += manager.indexToNode(index) + " Time(" + solution.min(timeVar) + ","
          + solution.max(timeVar) + ")";
      logger.info(route);
      logger.info("Time of the route: " + solution.min(timeVar) + "min");
      totalTime += solution.min(timeVar);
    }
    logger.info("Total time of all routes: " + totalTime + "min");
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the data problem.
    final DataModel data = new DataModel();

    // Create Routing Index Manager
    RoutingIndexManager manager =
        new RoutingIndexManager(data.timeMatrix.length, data.vehicleNumber, data.depot);

    // Create Routing Model.
    RoutingModel routing = new RoutingModel(manager);

    // Create and register a transit callback.
    final int transitCallbackIndex =
        routing.registerTransitCallback((long fromIndex, long toIndex) -> {
          // Convert from routing variable Index to user NodeIndex.
          int fromNode = manager.indexToNode(fromIndex);
          int toNode = manager.indexToNode(toIndex);
          return data.timeMatrix[fromNode][toNode];
        });

    // Define cost of each arc.
    routing.setArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

    // Add Time constraint.
    routing.addDimension(transitCallbackIndex, // transit callback
        30, // allow waiting time
        30, // vehicle maximum capacities
        false, // start cumul to zero
        "Time");
    RoutingDimension timeDimension = routing.getMutableDimension("Time");
    // Add time window constraints for each location except depot.
    for (int i = 1; i < data.timeWindows.length; ++i) {
      long index = manager.nodeToIndex(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[i][0], data.timeWindows[i][1]);
    }
    // Add time window constraints for each vehicle start node.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      long index = routing.start(i);
      timeDimension.cumulVar(index).setRange(data.timeWindows[0][0], data.timeWindows[0][1]);
    }

    // Instantiate route start and end times to produce feasible times.
    for (int i = 0; i < data.vehicleNumber; ++i) {
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.start(i)));
      routing.addVariableMinimizedByFinalizer(timeDimension.cumulVar(routing.end(i)));
    }

    // Setting first solution heuristic.
    RoutingSearchParameters searchParameters =
        main.defaultRoutingSearchParameters()
            .toBuilder()
            .setFirstSolutionStrategy(FirstSolutionStrategy.Value.PATH_CHEAPEST_ARC)
            .build();

    // Solve the problem.
    Assignment solution = routing.solveWithParameters(searchParameters);

    // Print solution on console.
    printSolution(data, routing, manager, solution);
  }
}
// [END_program_part1]

C#

using System;
using System.Collections.Generic;
using Google.OrTools.ConstraintSolver;

/// <summary>
///   Vehicles Routing Problem (VRP) with Time Windows.
/// </summary>
public class VrpTimeWindows
{
    class DataModel
    {
        public long[,] TimeMatrix = {
            { 0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7 },
            { 6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14 },
            { 9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9 },
            { 8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16 },
            { 7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14 },
            { 3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8 },
            { 6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5 },
            { 2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10 },
            { 3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6 },
            { 2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5 },
            { 6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4 },
            { 6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10 },
            { 4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8 },
            { 4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6 },
            { 5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2 },
            { 9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9 },
            { 7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0 },
        };
        public long[,] TimeWindows = {
            { 0, 5 },   // depot
            { 7, 12 },  // 1
            { 10, 15 }, // 2
            { 16, 18 }, // 3
            { 10, 13 }, // 4
            { 0, 5 },   // 5
            { 5, 10 },  // 6
            { 0, 4 },   // 7
            { 5, 10 },  // 8
            { 0, 3 },   // 9
            { 10, 16 }, // 10
            { 10, 15 }, // 11
            { 0, 5 },   // 12
            { 5, 10 },  // 13
            { 7, 8 },   // 14
            { 10, 15 }, // 15
            { 11, 15 }, // 16
        };
        public int VehicleNumber = 4;
        public int Depot = 0;
    };

    /// <summary>
    ///   Print the solution.
    /// </summary>
    static void PrintSolution(in DataModel data, in RoutingModel routing, in RoutingIndexManager manager,
                              in Assignment solution)
    {
        Console.WriteLine($"Objective {solution.ObjectiveValue()}:");

        // Inspect solution.
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        long totalTime = 0;
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            Console.WriteLine("Route for Vehicle {0}:", i);
            var index = routing.Start(i);
            while (routing.IsEnd(index) == false)
            {
                var timeVar = timeDimension.CumulVar(index);
                Console.Write("{0} Time({1},{2}) -> ", manager.IndexToNode(index), solution.Min(timeVar),
                              solution.Max(timeVar));
                index = solution.Value(routing.NextVar(index));
            }
            var endTimeVar = timeDimension.CumulVar(index);
            Console.WriteLine("{0} Time({1},{2})", manager.IndexToNode(index), solution.Min(endTimeVar),
                              solution.Max(endTimeVar));
            Console.WriteLine("Time of the route: {0}min", solution.Min(endTimeVar));
            totalTime += solution.Min(endTimeVar);
        }
        Console.WriteLine("Total time of all routes: {0}min", totalTime);
    }

    public static void Main(String[] args)
    {
        // Instantiate the data problem.
        DataModel data = new DataModel();

        // Create Routing Index Manager
        RoutingIndexManager manager =
            new RoutingIndexManager(data.TimeMatrix.GetLength(0), data.VehicleNumber, data.Depot);

        // Create Routing Model.
        RoutingModel routing = new RoutingModel(manager);

        // Create and register a transit callback.
        int transitCallbackIndex = routing.RegisterTransitCallback((long fromIndex, long toIndex) =>
                                                                   {
                                                                       // Convert from routing variable Index to time
                                                                       // matrix NodeIndex.
                                                                       var fromNode = manager.IndexToNode(fromIndex);
                                                                       var toNode = manager.IndexToNode(toIndex);
                                                                       return data.TimeMatrix[fromNode, toNode];
                                                                   });

        // Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transitCallbackIndex);

        // Add Time constraint.
        routing.AddDimension(transitCallbackIndex, // transit callback
                             30,                   // allow waiting time
                             30,                   // vehicle maximum capacities
                             false,                // start cumul to zero
                             "Time");
        RoutingDimension timeDimension = routing.GetMutableDimension("Time");
        // Add time window constraints for each location except depot.
        for (int i = 1; i < data.TimeWindows.GetLength(0); ++i)
        {
            long index = manager.NodeToIndex(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[i, 0], data.TimeWindows[i, 1]);
        }
        // Add time window constraints for each vehicle start node.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            long index = routing.Start(i);
            timeDimension.CumulVar(index).SetRange(data.TimeWindows[0, 0], data.TimeWindows[0, 1]);
        }

        // Instantiate route start and end times to produce feasible times.
        for (int i = 0; i < data.VehicleNumber; ++i)
        {
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.Start(i)));
            routing.AddVariableMinimizedByFinalizer(timeDimension.CumulVar(routing.End(i)));
        }

        // Setting first solution heuristic.
        RoutingSearchParameters searchParameters =
            operations_research_constraint_solver.DefaultRoutingSearchParameters();
        searchParameters.FirstSolutionStrategy = FirstSolutionStrategy.Types.Value.PathCheapestArc;

        // Solve the problem.
        Assignment solution = routing.SolveWithParameters(searchParameters);

        // Print solution on console.
        PrintSolution(data, routing, manager, solution);
    }
}