מטלה עם גודלי משימות

בקטע הזה מתוארת בעיה במטלה שבה לכל משימה יש גודל, שמייצג את הזמן או המאמץ הנדרשים לביצוע המשימה. לגודל הכולל של המשימות שכל עובד צריך לבצע יש מגבלה קבועה.

נציג תוכניות Python שיפתרו את הבעיה הזו באמצעות פותר CP-SAT ופותר ה-MIP.

פתרון CP-SAT

קודם כול נבחן את פתרון CP-SAT לבעיה.

ייבוא הספריות

הקוד הבא מייבא את הספרייה הנדרשת.

Python

from ortools.sat.python import cp_model

C++‎

#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

C#‎

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

הגדרת הנתונים

הקוד הבא יוצר את הנתונים של התוכנה.

Python

costs = [
    [90, 76, 75, 70, 50, 74, 12, 68],
    [35, 85, 55, 65, 48, 101, 70, 83],
    [125, 95, 90, 105, 59, 120, 36, 73],
    [45, 110, 95, 115, 104, 83, 37, 71],
    [60, 105, 80, 75, 59, 62, 93, 88],
    [45, 65, 110, 95, 47, 31, 81, 34],
    [38, 51, 107, 41, 69, 99, 115, 48],
    [47, 85, 57, 71, 92, 77, 109, 36],
    [39, 63, 97, 49, 118, 56, 92, 61],
    [47, 101, 71, 60, 88, 109, 52, 90],
]
num_workers = len(costs)
num_tasks = len(costs[0])

task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
# Maximum total of task sizes for any worker
total_size_max = 15

C++‎

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70, 50, 74, 12, 68}},
    {{35, 85, 55, 65, 48, 101, 70, 83}},
    {{125, 95, 90, 105, 59, 120, 36, 73}},
    {{45, 110, 95, 115, 104, 83, 37, 71}},
    {{60, 105, 80, 75, 59, 62, 93, 88}},
    {{45, 65, 110, 95, 47, 31, 81, 34}},
    {{38, 51, 107, 41, 69, 99, 115, 48}},
    {{47, 85, 57, 71, 92, 77, 109, 36}},
    {{39, 63, 97, 49, 118, 56, 92, 61}},
    {{47, 101, 71, 60, 88, 109, 52, 90}},
}};
const int num_workers = static_cast<int>(costs.size());
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = static_cast<int>(costs[0].size());
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
// Maximum total of task sizes for any worker
const int total_size_max = 15;

Java

int[][] costs = {
    {90, 76, 75, 70, 50, 74, 12, 68},
    {35, 85, 55, 65, 48, 101, 70, 83},
    {125, 95, 90, 105, 59, 120, 36, 73},
    {45, 110, 95, 115, 104, 83, 37, 71},
    {60, 105, 80, 75, 59, 62, 93, 88},
    {45, 65, 110, 95, 47, 31, 81, 34},
    {38, 51, 107, 41, 69, 99, 115, 48},
    {47, 85, 57, 71, 92, 77, 109, 36},
    {39, 63, 97, 49, 118, 56, 92, 61},
    {47, 101, 71, 60, 88, 109, 52, 90},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
// Maximum total of task sizes for any worker
final int totalSizeMax = 15;

C#‎

int[,] costs = {
    { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
    { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
    { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
    { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
    { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
// Maximum total of task sizes for any worker
int totalSizeMax = 15;

כמו בדוגמאות הקודמות, מטריצת העלויות מחזירה את העלות לעובד i לביצוע המשימה j. הווקטור sizes מציין את הגודל של כל משימה. total_size_max הוא הגבול העליון של הגודל הכולל של המשימות מבוצע על ידי כל עובד יחיד.

יצירת המודל

הקוד הבא יוצר את המודל.

Python

model = cp_model.CpModel()

C++‎

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#‎

CpModel model = new CpModel();

יצירת המשתנים

הקוד הבא יוצר מערך של משתנים לבעיה.

Python

x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

C++‎

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] = cp_model.NewBoolVar().WithName(
        absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

Literal[][] x = new Literal[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

C#‎

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
    }
}

הוספת המגבלות

הקוד הבא יוצר את המגבלות של התוכנה.

Python

# Each worker is assigned to at most one task.
for worker in range(num_workers):
    model.add(
        sum(task_sizes[task] * x[worker, task] for task in range(num_tasks))
        <= total_size_max
    )

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    model.add_exactly_one(x[worker, task] for worker in range(num_workers))

C++‎

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr task_sum;
  for (int task : all_tasks) {
    task_sum += x[worker][task] * task_sizes[task];
  }
  cp_model.AddLessOrEqual(task_sum, total_size_max);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  std::vector<BoolVar> tasks;
  for (int worker : all_workers) {
    tasks.push_back(x[worker][task]);
  }
  cp_model.AddExactlyOne(tasks);
}

Java

// Each worker has a maximum capacity.
for (int worker : allWorkers) {
  LinearExprBuilder expr = LinearExpr.newBuilder();
  for (int task : allTasks) {
    expr.addTerm(x[worker][task], taskSizes[task]);
  }
  model.addLessOrEqual(expr, totalSizeMax);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

C#‎

// Each worker is assigned to at most max task size.
foreach (int worker in allWorkers)
{
    BoolVar[] vars = new BoolVar[numTasks];
    foreach (int task in allTasks)
    {
        vars[task] = x[worker, task];
    }
    model.Add(LinearExpr.WeightedSum(vars, taskSizes) <= totalSizeMax);
}

// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    List<ILiteral> workers = new List<ILiteral>();
    foreach (int worker in allWorkers)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

יוצרים את היעד

הקוד הבא יוצר את פונקציית המטרה.

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
model.minimize(sum(objective_terms))

C++‎

LinearExpr total_cost;
for (int worker : all_workers) {
  for (int task : all_tasks) {
    total_cost += x[worker][task] * costs[worker][task];
  }
}
cp_model.Minimize(total_cost);

Java

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

C#‎

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        obj.AddTerm(x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

הפעלת הפותר

הקוד הבא מפעיל את הפותר.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++‎

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#‎

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

הצגת התוצאות

עכשיו אנחנו יכולים להדפיס את הפתרון.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Total cost = {solver.objective_value}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if solver.boolean_value(x[worker, task]):
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost = {costs[worker][task]}"
                )
else:
    print("No solution found.")

C++‎

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int worker : all_workers) {
  for (int task : all_tasks) {
    if (SolutionBooleanValue(response, x[worker][task])) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      if (solver.booleanValue(x[worker][task])) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#‎

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            if (solver.Value(x[worker, task]) > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                  $"Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

כך רואים את הפלט של התוכנית.

Minimum cost: 326
Worker  0  assigned to task  6   Cost =  12
Worker  1  assigned to task  0   Cost =  35
Worker  1  assigned to task  2   Cost =  55
Worker  2  assigned to task  4   Cost =  59
Worker  5  assigned to task  5   Cost =  31
Worker  5  assigned to task  7   Cost =  34
Worker  6  assigned to task  1   Cost =  51
Worker  8  assigned to task  3   Cost =  49

Time =  2.2198 seconds

התוכנית כולה

כאן מוצגת התוכנית כולה.

Python

"""Solves a simple assignment problem."""
from ortools.sat.python import cp_model


def main() -> None:
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74, 12, 68],
        [35, 85, 55, 65, 48, 101, 70, 83],
        [125, 95, 90, 105, 59, 120, 36, 73],
        [45, 110, 95, 115, 104, 83, 37, 71],
        [60, 105, 80, 75, 59, 62, 93, 88],
        [45, 65, 110, 95, 47, 31, 81, 34],
        [38, 51, 107, 41, 69, 99, 115, 48],
        [47, 85, 57, 71, 92, 77, 109, 36],
        [39, 63, 97, 49, 118, 56, 92, 61],
        [47, 101, 71, 60, 88, 109, 52, 90],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
    # Maximum total of task sizes for any worker
    total_size_max = 15

    # Model
    model = cp_model.CpModel()

    # Variables
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

    # Constraints
    # Each worker is assigned to at most one task.
    for worker in range(num_workers):
        model.add(
            sum(task_sizes[task] * x[worker, task] for task in range(num_tasks))
            <= total_size_max
        )

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        model.add_exactly_one(x[worker, task] for worker in range(num_workers))

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    model.minimize(sum(objective_terms))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Total cost = {solver.objective_value}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if solver.boolean_value(x[worker, task]):
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost = {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++‎

// Solve assignment problem.
#include <stdlib.h>

#include <cstdint>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void AssignmentTaskSizes() {
  // Data
  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70, 50, 74, 12, 68}},
      {{35, 85, 55, 65, 48, 101, 70, 83}},
      {{125, 95, 90, 105, 59, 120, 36, 73}},
      {{45, 110, 95, 115, 104, 83, 37, 71}},
      {{60, 105, 80, 75, 59, 62, 93, 88}},
      {{45, 65, 110, 95, 47, 31, 81, 34}},
      {{38, 51, 107, 41, 69, 99, 115, 48}},
      {{47, 85, 57, 71, 92, 77, 109, 36}},
      {{39, 63, 97, 49, 118, 56, 92, 61}},
      {{47, 101, 71, 60, 88, 109, 52, 90}},
  }};
  const int num_workers = static_cast<int>(costs.size());
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = static_cast<int>(costs[0].size());
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
  // Maximum total of task sizes for any worker
  const int total_size_max = 15;

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr task_sum;
    for (int task : all_tasks) {
      task_sum += x[worker][task] * task_sizes[task];
    }
    cp_model.AddLessOrEqual(task_sum, total_size_max);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    std::vector<BoolVar> tasks;
    for (int worker : all_workers) {
      tasks.push_back(x[worker][task]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Objective
  LinearExpr total_cost;
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      total_cost += x[worker][task] * costs[worker][task];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      if (SolutionBooleanValue(response, x[worker][task])) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::AssignmentTaskSizes();
  return EXIT_SUCCESS;
}

Java

// CP-SAT example that solves an assignment problem.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentTaskSizesSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 76, 75, 70, 50, 74, 12, 68},
        {35, 85, 55, 65, 48, 101, 70, 83},
        {125, 95, 90, 105, 59, 120, 36, 73},
        {45, 110, 95, 115, 104, 83, 37, 71},
        {60, 105, 80, 75, 59, 62, 93, 88},
        {45, 65, 110, 95, 47, 31, 81, 34},
        {38, 51, 107, 41, 69, 99, 115, 48},
        {47, 85, 57, 71, 92, 77, 109, 36},
        {39, 63, 97, 49, 118, 56, 92, 61},
        {47, 101, 71, 60, 88, 109, 52, 90},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
    // Maximum total of task sizes for any worker
    final int totalSizeMax = 15;

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker has a maximum capacity.
    for (int worker : allWorkers) {
      LinearExprBuilder expr = LinearExpr.newBuilder();
      for (int task : allTasks) {
        expr.addTerm(x[worker][task], taskSizes[task]);
      }
      model.addLessOrEqual(expr, totalSizeMax);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          if (solver.booleanValue(x[worker][task])) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentTaskSizesSat() {}
}

C#‎

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class AssignmentTaskSizesSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
            { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
            { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
            { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
            { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
        // Maximum total of task sizes for any worker
        int totalSizeMax = 15;

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most max task size.
        foreach (int worker in allWorkers)
        {
            BoolVar[] vars = new BoolVar[numTasks];
            foreach (int task in allTasks)
            {
                vars[task] = x[worker, task];
            }
            model.Add(LinearExpr.WeightedSum(vars, taskSizes) <= totalSizeMax);
        }

        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            List<ILiteral> workers = new List<ILiteral>();
            foreach (int worker in allWorkers)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                obj.AddTerm(x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    if (solver.Value(x[worker, task]) > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                          $"Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}

פתרון MIP

בשלב הבא נתאר פתרון לבעיית ההקצאה באמצעות פותר ה-MIP.

ייבוא הספריות

הקוד הבא מייבא את הספרייה הנדרשת.

Python

from ortools.linear_solver import pywraplp

C++‎

#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

C#‎

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

הגדרת הנתונים

הקוד הבא יוצר את הנתונים של התוכנה.

Python

costs = [
    [90, 76, 75, 70, 50, 74, 12, 68],
    [35, 85, 55, 65, 48, 101, 70, 83],
    [125, 95, 90, 105, 59, 120, 36, 73],
    [45, 110, 95, 115, 104, 83, 37, 71],
    [60, 105, 80, 75, 59, 62, 93, 88],
    [45, 65, 110, 95, 47, 31, 81, 34],
    [38, 51, 107, 41, 69, 99, 115, 48],
    [47, 85, 57, 71, 92, 77, 109, 36],
    [39, 63, 97, 49, 118, 56, 92, 61],
    [47, 101, 71, 60, 88, 109, 52, 90],
]
num_workers = len(costs)
num_tasks = len(costs[0])

task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
# Maximum total of task sizes for any worker
total_size_max = 15

C++‎

const std::vector<std::vector<int64_t>> costs = {{
    {{90, 76, 75, 70, 50, 74, 12, 68}},
    {{35, 85, 55, 65, 48, 101, 70, 83}},
    {{125, 95, 90, 105, 59, 120, 36, 73}},
    {{45, 110, 95, 115, 104, 83, 37, 71}},
    {{60, 105, 80, 75, 59, 62, 93, 88}},
    {{45, 65, 110, 95, 47, 31, 81, 34}},
    {{38, 51, 107, 41, 69, 99, 115, 48}},
    {{47, 85, 57, 71, 92, 77, 109, 36}},
    {{39, 63, 97, 49, 118, 56, 92, 61}},
    {{47, 101, 71, 60, 88, 109, 52, 90}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
// Maximum total of task sizes for any worker
const int total_size_max = 15;

Java

double[][] costs = {
    {90, 76, 75, 70, 50, 74, 12, 68},
    {35, 85, 55, 65, 48, 101, 70, 83},
    {125, 95, 90, 105, 59, 120, 36, 73},
    {45, 110, 95, 115, 104, 83, 37, 71},
    {60, 105, 80, 75, 59, 62, 93, 88},
    {45, 65, 110, 95, 47, 31, 81, 34},
    {38, 51, 107, 41, 69, 99, 115, 48},
    {47, 85, 57, 71, 92, 77, 109, 36},
    {39, 63, 97, 49, 118, 56, 92, 61},
    {47, 101, 71, 60, 88, 109, 52, 90},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
// Maximum total of task sizes for any worker
final int totalSizeMax = 15;

C#‎

int[,] costs = {
    { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
    { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
    { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
    { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
    { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
// Maximum total of task sizes for any worker
int totalSizeMax = 15;

להצהיר על הפתרון

הקוד הבא יוצר את הפותר.

Python

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver("SCIP")

if not solver:
    return

C++‎

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#‎

Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

יצירת המשתנים

הקוד הבא יוצר מערך של משתנים לבעיה.

Python

# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

C++‎

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] =
        solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
  }
}

Java

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
  }
}

C#‎

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
    }
}

הוספת המגבלות

הקוד הבא יוצר את המגבלות של התוכנה.

Python

# The total size of the tasks each worker takes on is at most total_size_max.
for worker in range(num_workers):
    solver.Add(
        solver.Sum(
            [task_sizes[task] * x[worker, task] for task in range(num_tasks)]
        )
        <= total_size_max
    )

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

C++‎

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr worker_sum;
  for (int task : all_tasks) {
    worker_sum += LinearExpr(x[worker][task]) * task_sizes[task];
  }
  solver->MakeRowConstraint(worker_sum <= total_size_max);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  LinearExpr task_sum;
  for (int worker : all_workers) {
    task_sum += x[worker][task];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

Java

// Each worker is assigned to at most max task size.
for (int worker : allWorkers) {
  MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, "");
  for (int task : allTasks) {
    constraint.setCoefficient(x[worker][task], taskSizes[task]);
  }
}
// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int worker : allWorkers) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}

C#‎

// Each worker is assigned to at most max task size.
foreach (int worker in allWorkers)
{
    Constraint constraint = solver.MakeConstraint(0, totalSizeMax, "");
    foreach (int task in allTasks)
    {
        constraint.SetCoefficient(x[worker, task], taskSizes[task]);
    }
}
// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    foreach (int worker in allWorkers)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}

יוצרים את היעד

הקוד הבא יוצר את פונקציית המטרה.

Python

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
solver.Minimize(solver.Sum(objective_terms))

C++‎

MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
  for (int task : all_tasks) {
    objective->SetCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective->SetMinimization();

Java

MPObjective objective = solver.objective();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    objective.setCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective.setMinimization();

C#‎

Objective objective = solver.Objective();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        objective.SetCoefficient(x[worker, task], costs[worker, task]);
    }
}
objective.SetMinimization();

הפעלת הפותר

הקוד הבא מפעיל את הפותר ומציג את התוצאות.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

C++‎

const MPSolver::ResultStatus result_status = solver->Solve();

Java

MPSolver.ResultStatus resultStatus = solver.solve();

C#‎

Solver.ResultStatus resultStatus = solver.Solve();

הצגת התוצאות

עכשיו אנחנו יכולים להדפיס את הפתרון.

Python

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f"Total cost = {solver.Objective().Value()}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if x[worker, task].solution_value() > 0.5:
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost: {costs[worker][task]}"
                )
else:
    print("No solution found.")

C++‎

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
  for (int task : all_tasks) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[worker][task]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

Java

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task].solutionValue() > 0.5) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

C#‎

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[worker, task].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

כך ייראה הפלט של התוכנית.

Minimum cost =  326.0

Worker 0  assigned to task 6   Cost =  12
Worker 1  assigned to task 0   Cost =  35
Worker 1  assigned to task 2   Cost =  55
Worker 4  assigned to task 4   Cost =  59
Worker 5  assigned to task 5   Cost =  31
Worker 5  assigned to task 7   Cost =  34
Worker 6  assigned to task 1   Cost =  51
Worker 8  assigned to task 3   Cost =  49

Time =  0.0167 seconds

התוכנית כולה

כאן מוצגת התוכנית כולה.

Python

"""MIP example that solves an assignment problem."""
from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 76, 75, 70, 50, 74, 12, 68],
        [35, 85, 55, 65, 48, 101, 70, 83],
        [125, 95, 90, 105, 59, 120, 36, 73],
        [45, 110, 95, 115, 104, 83, 37, 71],
        [60, 105, 80, 75, 59, 62, 93, 88],
        [45, 65, 110, 95, 47, 31, 81, 34],
        [38, 51, 107, 41, 69, 99, 115, 48],
        [47, 85, 57, 71, 92, 77, 109, 36],
        [39, 63, 97, 49, 118, 56, 92, 61],
        [47, 101, 71, 60, 88, 109, 52, 90],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    task_sizes = [10, 7, 3, 12, 15, 4, 11, 5]
    # Maximum total of task sizes for any worker
    total_size_max = 15

    # Solver
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")

    if not solver:
        return

    # Variables
    # x[i, j] is an array of 0-1 variables, which will be 1
    # if worker i is assigned to task j.
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

    # Constraints
    # The total size of the tasks each worker takes on is at most total_size_max.
    for worker in range(num_workers):
        solver.Add(
            solver.Sum(
                [task_sizes[task] * x[worker, task] for task in range(num_tasks)]
            )
            <= total_size_max
        )

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f"Total cost = {solver.Objective().Value()}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if x[worker, task].solution_value() > 0.5:
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost: {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

C++‎

// Solve a simple assignment problem.
#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentTeamsMip() {
  // Data
  const std::vector<std::vector<int64_t>> costs = {{
      {{90, 76, 75, 70, 50, 74, 12, 68}},
      {{35, 85, 55, 65, 48, 101, 70, 83}},
      {{125, 95, 90, 105, 59, 120, 36, 73}},
      {{45, 110, 95, 115, 104, 83, 37, 71}},
      {{60, 105, 80, 75, 59, 62, 93, 88}},
      {{45, 65, 110, 95, 47, 31, 81, 34}},
      {{38, 51, 107, 41, 69, 99, 115, 48}},
      {{47, 85, 57, 71, 92, 77, 109, 36}},
      {{39, 63, 97, 49, 118, 56, 92, 61}},
      {{47, 101, 71, 60, 88, 109, 52, 90}},
  }};
  const int num_workers = costs.size();
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = costs[0].size();
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<int64_t> task_sizes = {{10, 7, 3, 12, 15, 4, 11, 5}};
  // Maximum total of task sizes for any worker
  const int total_size_max = 15;

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] =
          solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr worker_sum;
    for (int task : all_tasks) {
      worker_sum += LinearExpr(x[worker][task]) * task_sizes[task];
    }
    solver->MakeRowConstraint(worker_sum <= total_size_max);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    LinearExpr task_sum;
    for (int worker : all_workers) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      objective->SetCoefficient(x[worker][task], costs[worker][task]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentTeamsMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** MIP example that solves an assignment problem. */
public class AssignmentTaskSizesMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 76, 75, 70, 50, 74, 12, 68},
        {35, 85, 55, 65, 48, 101, 70, 83},
        {125, 95, 90, 105, 59, 120, 36, 73},
        {45, 110, 95, 115, 104, 83, 37, 71},
        {60, 105, 80, 75, 59, 62, 93, 88},
        {45, 65, 110, 95, 47, 31, 81, 34},
        {38, 51, 107, 41, 69, 99, 115, 48},
        {47, 85, 57, 71, 92, 77, 109, 36},
        {39, 63, 97, 49, 118, 56, 92, 61},
        {47, 101, 71, 60, 88, 109, 52, 90},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    final int[] taskSizes = {10, 7, 3, 12, 15, 4, 11, 5};
    // Maximum total of task sizes for any worker
    final int totalSizeMax = 15;

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most max task size.
    for (int worker : allWorkers) {
      MPConstraint constraint = solver.makeConstraint(0, totalSizeMax, "");
      for (int task : allTasks) {
        constraint.setCoefficient(x[worker][task], taskSizes[task]);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int worker : allWorkers) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        objective.setCoefficient(x[worker][task], costs[worker][task]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[worker][task].solutionValue() > 0.5) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentTaskSizesMip() {}
}

C#‎

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class AssignmentTaskSizesMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70, 50, 74, 12, 68 },    { 35, 85, 55, 65, 48, 101, 70, 83 },
            { 125, 95, 90, 105, 59, 120, 36, 73 }, { 45, 110, 95, 115, 104, 83, 37, 71 },
            { 60, 105, 80, 75, 59, 62, 93, 88 },   { 45, 65, 110, 95, 47, 31, 81, 34 },
            { 38, 51, 107, 41, 69, 99, 115, 48 },  { 47, 85, 57, 71, 92, 77, 109, 36 },
            { 39, 63, 97, 49, 118, 56, 92, 61 },   { 47, 101, 71, 60, 88, 109, 52, 90 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        int[] taskSizes = { 10, 7, 3, 12, 15, 4, 11, 5 };
        // Maximum total of task sizes for any worker
        int totalSizeMax = 15;

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most max task size.
        foreach (int worker in allWorkers)
        {
            Constraint constraint = solver.MakeConstraint(0, totalSizeMax, "");
            foreach (int task in allTasks)
            {
                constraint.SetCoefficient(x[worker, task], taskSizes[task]);
            }
        }
        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            foreach (int worker in allWorkers)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }

        // Objective
        Objective objective = solver.Objective();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                objective.SetCoefficient(x[worker, task], costs[worker, task]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[worker, task].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}