Решение задачи о назначении

В этом разделе представлен пример, показывающий, как решить задачу о назначениях, используя как решатель MIP, так и решатель CP-SAT.

Пример

В примере есть пять рабочих (с номерами 0–4) и четыре задачи (с номерами 0–3). Обратите внимание, что здесь на одного работника больше, чем в примере в Обзоре .

Затраты на назначение работников на задачи показаны в следующей таблице.

Рабочий Задача 0 Задача 1 Задача 2 Задача 3
0 90 80 75 70
1 35 85 55 65
2 125 95 90 95
3 45 110 95 115
4 50 100 90 100

Проблема состоит в том, чтобы назначить каждого работника не более чем на одну задачу, при этом не должно быть двух рабочих, выполняющих одну и ту же задачу, и при этом минимизировать общие затраты. Поскольку рабочих больше, чем задач, одному работнику задача не будет назначена.

МИП-решение

В следующих разделах описано, как решить проблему с помощью оболочки MPsolver .

Импортируйте библиотеки

Следующий код импортирует необходимые библиотеки.

Питон

from ortools.linear_solver import pywraplp

С++

#include <memory>
#include <vector>

#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

Ява

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

С#

using System;
using Google.OrTools.LinearSolver;

Создайте данные

Следующий код создает данные для проблемы.

Питон

costs = [
    [90, 80, 75, 70],
    [35, 85, 55, 65],
    [125, 95, 90, 95],
    [45, 110, 95, 115],
    [50, 100, 90, 100],
]
num_workers = len(costs)
num_tasks = len(costs[0])

С++

const std::vector<std::vector<double>> costs{
    {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
    {45, 110, 95, 115}, {50, 100, 90, 100},
};
const int num_workers = costs.size();
const int num_tasks = costs[0].size();

Ява

double[][] costs = {
    {90, 80, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 95},
    {45, 110, 95, 115},
    {50, 100, 90, 100},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

С#

int[,] costs = {
    { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

Массив costs соответствует таблице затрат на назначение работников на задачи, показанной выше.

Объявить решатель MIP

Следующий код объявляет решатель MIP.

Питон

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver("SCIP")

if not solver:
    return

С++

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

Ява

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

С#

Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

Создайте переменные

Следующий код создает двоичные целочисленные переменные для решения проблемы.

Питон

# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = {}
for i in range(num_workers):
    for j in range(num_tasks):
        x[i, j] = solver.IntVar(0, 1, "")

С++

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    x[i][j] = solver->MakeIntVar(0, 1, "");
  }
}

Ява

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int i = 0; i < numWorkers; ++i) {
  for (int j = 0; j < numTasks; ++j) {
    x[i][j] = solver.makeIntVar(0, 1, "");
  }
}

С#

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
for (int i = 0; i < numWorkers; ++i)
{
    for (int j = 0; j < numTasks; ++j)
    {
        x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}");
    }
}

Создайте ограничения

Следующий код создает ограничения для проблемы.

Питон

# Each worker is assigned to at most 1 task.
for i in range(num_workers):
    solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)

# Each task is assigned to exactly one worker.
for j in range(num_tasks):
    solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)

С++

// Each worker is assigned to at most one task.
for (int i = 0; i < num_workers; ++i) {
  LinearExpr worker_sum;
  for (int j = 0; j < num_tasks; ++j) {
    worker_sum += x[i][j];
  }
  solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < num_tasks; ++j) {
  LinearExpr task_sum;
  for (int i = 0; i < num_workers; ++i) {
    task_sum += x[i][j];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

Ява

// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int j = 0; j < numTasks; ++j) {
    constraint.setCoefficient(x[i][j], 1);
  }
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int i = 0; i < numWorkers; ++i) {
    constraint.setCoefficient(x[i][j], 1);
  }
}

С#

// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    for (int j = 0; j < numTasks; ++j)
    {
        constraint.SetCoefficient(x[i, j], 1);
    }
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    for (int i = 0; i < numWorkers; ++i)
    {
        constraint.SetCoefficient(x[i, j], 1);
    }
}

Создайте целевую функцию

Следующий код создает целевую функцию для задачи.

Питон

objective_terms = []
for i in range(num_workers):
    for j in range(num_tasks):
        objective_terms.append(costs[i][j] * x[i, j])
solver.Minimize(solver.Sum(objective_terms))

С++

MPObjective* const objective = solver->MutableObjective();
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    objective->SetCoefficient(x[i][j], costs[i][j]);
  }
}
objective->SetMinimization();

Ява

MPObjective objective = solver.objective();
for (int i = 0; i < numWorkers; ++i) {
  for (int j = 0; j < numTasks; ++j) {
    objective.setCoefficient(x[i][j], costs[i][j]);
  }
}
objective.setMinimization();

С#

Objective objective = solver.Objective();
for (int i = 0; i < numWorkers; ++i)
{
    for (int j = 0; j < numTasks; ++j)
    {
        objective.SetCoefficient(x[i, j], costs[i, j]);
    }
}
objective.SetMinimization();

Значение целевой функции — это общая стоимость всех переменных, которым решатель присваивает значение 1.

Вызов решателя

Следующий код вызывает решатель.

Питон

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

С++

const MPSolver::ResultStatus result_status = solver->Solve();

Ява

MPSolver.ResultStatus resultStatus = solver.solve();

С#

Solver.ResultStatus resultStatus = solver.Solve();

Следующий код выводит решение проблемы.

Питон

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f"Total cost = {solver.Objective().Value()}\n")
    for i in range(num_workers):
        for j in range(num_tasks):
            # Test if x[i,j] is 1 (with tolerance for floating point arithmetic).
            if x[i, j].solution_value() > 0.5:
                print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")
else:
    print("No solution found.")

С++

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}

LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";

for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[i][j]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << i << " assigned to task " << j
                << ".  Cost = " << costs[i][j];
    }
  }
}

Ява

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int i = 0; i < numWorkers; ++i) {
    for (int j = 0; j < numTasks; ++j) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[i][j].solutionValue() > 0.5) {
        System.out.println(
            "Worker " + i + " assigned to task " + j + ".  Cost = " + costs[i][j]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

С#

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    for (int i = 0; i < numWorkers; ++i)
    {
        for (int j = 0; j < numTasks; ++j)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[i, j].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

Вот результат работы программы.

Total cost =  265.0

Worker 0 assigned to task 3.  Cost = 70
Worker 1 assigned to task 2.  Cost = 55
Worker 2 assigned to task 1.  Cost = 95
Worker 3 assigned to task 0.  Cost = 45

Полные программы

Вот полные программы для решения MIP.

Питон

from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 80, 75, 70],
        [35, 85, 55, 65],
        [125, 95, 90, 95],
        [45, 110, 95, 115],
        [50, 100, 90, 100],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    # Solver
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")

    if not solver:
        return

    # Variables
    # x[i, j] is an array of 0-1 variables, which will be 1
    # if worker i is assigned to task j.
    x = {}
    for i in range(num_workers):
        for j in range(num_tasks):
            x[i, j] = solver.IntVar(0, 1, "")

    # Constraints
    # Each worker is assigned to at most 1 task.
    for i in range(num_workers):
        solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1)

    # Each task is assigned to exactly one worker.
    for j in range(num_tasks):
        solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)

    # Objective
    objective_terms = []
    for i in range(num_workers):
        for j in range(num_tasks):
            objective_terms.append(costs[i][j] * x[i, j])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f"Total cost = {solver.Objective().Value()}\n")
        for i in range(num_workers):
            for j in range(num_tasks):
                # Test if x[i,j] is 1 (with tolerance for floating point arithmetic).
                if x[i, j].solution_value() > 0.5:
                    print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}")
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

С++

#include <memory>
#include <vector>

#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentMip() {
  // Data
  const std::vector<std::vector<double>> costs{
      {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
      {45, 110, 95, 115}, {50, 100, 90, 100},
  };
  const int num_workers = costs.size();
  const int num_tasks = costs[0].size();

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      x[i][j] = solver->MakeIntVar(0, 1, "");
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int i = 0; i < num_workers; ++i) {
    LinearExpr worker_sum;
    for (int j = 0; j < num_tasks; ++j) {
      worker_sum += x[i][j];
    }
    solver->MakeRowConstraint(worker_sum <= 1.0);
  }
  // Each task is assigned to exactly one worker.
  for (int j = 0; j < num_tasks; ++j) {
    LinearExpr task_sum;
    for (int i = 0; i < num_workers; ++i) {
      task_sum += x[i][j];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      objective->SetCoefficient(x[i][j], costs[i][j]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }

  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";

  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[i][j]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << i << " assigned to task " << j
                  << ".  Cost = " << costs[i][j];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentMip();
  return EXIT_SUCCESS;
}

Ява

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

/** MIP example that solves an assignment problem. */
public class AssignmentMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 80, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 95},
        {45, 110, 95, 115},
        {50, 100, 90, 100},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int i = 0; i < numWorkers; ++i) {
      for (int j = 0; j < numTasks; ++j) {
        x[i][j] = solver.makeIntVar(0, 1, "");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int i = 0; i < numWorkers; ++i) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int j = 0; j < numTasks; ++j) {
        constraint.setCoefficient(x[i][j], 1);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int j = 0; j < numTasks; ++j) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int i = 0; i < numWorkers; ++i) {
        constraint.setCoefficient(x[i][j], 1);
      }
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int i = 0; i < numWorkers; ++i) {
      for (int j = 0; j < numTasks; ++j) {
        objective.setCoefficient(x[i][j], costs[i][j]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int i = 0; i < numWorkers; ++i) {
        for (int j = 0; j < numTasks; ++j) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[i][j].solutionValue() > 0.5) {
            System.out.println(
                "Worker " + i + " assigned to task " + j + ".  Cost = " + costs[i][j]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentMip() {}
}

С#

using System;
using Google.OrTools.LinearSolver;

public class AssignmentMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        for (int i = 0; i < numWorkers; ++i)
        {
            for (int j = 0; j < numTasks; ++j)
            {
                x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        for (int i = 0; i < numWorkers; ++i)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            for (int j = 0; j < numTasks; ++j)
            {
                constraint.SetCoefficient(x[i, j], 1);
            }
        }
        // Each task is assigned to exactly one worker.
        for (int j = 0; j < numTasks; ++j)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            for (int i = 0; i < numWorkers; ++i)
            {
                constraint.SetCoefficient(x[i, j], 1);
            }
        }

        // Objective
        Objective objective = solver.Objective();
        for (int i = 0; i < numWorkers; ++i)
        {
            for (int j = 0; j < numTasks; ++j)
            {
                objective.SetCoefficient(x[i, j], costs[i, j]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            for (int i = 0; i < numWorkers; ++i)
            {
                for (int j = 0; j < numTasks; ++j)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[i, j].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}

Решение CP SAT

В следующих разделах описано, как решить проблему с помощью решателя CP-SAT.

Импортируйте библиотеки

Следующий код импортирует необходимые библиотеки.

Питон

import io

import pandas as pd

from ortools.sat.python import cp_model

С++

#include <stdlib.h>

#include <vector>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

Ява

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

С#

using System;
using System.Collections.Generic;
using Google.OrTools.Sat;

Объявить модель

Следующий код объявляет модель CP-SAT.

Питон

model = cp_model.CpModel()

С++

CpModelBuilder cp_model;

Ява

CpModel model = new CpModel();

С#

CpModel model = new CpModel();

Создайте данные

Следующий код настраивает данные для проблемы.

Питон

  data_str = """
worker  task  cost
    w1    t1    90
    w1    t2    80
    w1    t3    75
    w1    t4    70
    w2    t1    35
    w2    t2    85
    w2    t3    55
    w2    t4    65
    w3    t1   125
    w3    t2    95
    w3    t3    90
    w3    t4    95
    w4    t1    45
    w4    t2   110
    w4    t3    95
    w4    t4   115
    w5    t1    50
    w5    t2   110
    w5    t3    90
    w5    t4   100
"""

  data = pd.read_table(io.StringIO(data_str), sep=r"\s+")

С++

const std::vector<std::vector<int>> costs{
    {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
    {45, 110, 95, 115}, {50, 100, 90, 100},
};
const int num_workers = static_cast<int>(costs.size());
const int num_tasks = static_cast<int>(costs[0].size());

Ява

int[][] costs = {
    {90, 80, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 95},
    {45, 110, 95, 115},
    {50, 100, 90, 100},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

С#

int[,] costs = {
    { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

Массив costs соответствует таблице затрат на назначение работников на задачи, показанной выше.

Создайте переменные

Следующий код создает двоичные целочисленные переменные для решения проблемы.

Питон

x = model.new_bool_var_series(name="x", index=data.index)

С++

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    x[i][j] = cp_model.NewBoolVar();
  }
}

Ява

Literal[][] x = new Literal[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

С#

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
// Variables in a 1-dim array.
for (int worker = 0; worker < numWorkers; ++worker)
{
    for (int task = 0; task < numTasks; ++task)
    {
        x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}");
    }
}

Создайте ограничения

Следующий код создает ограничения для проблемы.

Питон

# Each worker is assigned to at most one task.
for unused_name, tasks in data.groupby("worker"):
    model.add_at_most_one(x[tasks.index])

# Each task is assigned to exactly one worker.
for unused_name, workers in data.groupby("task"):
    model.add_exactly_one(x[workers.index])

С++

// Each worker is assigned to at most one task.
for (int i = 0; i < num_workers; ++i) {
  cp_model.AddAtMostOne(x[i]);
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < num_tasks; ++j) {
  std::vector<BoolVar> tasks;
  for (int i = 0; i < num_workers; ++i) {
    tasks.push_back(x[i][j]);
  }
  cp_model.AddExactlyOne(tasks);
}

Ява

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  List<Literal> tasks = new ArrayList<>();
  for (int task : allTasks) {
    tasks.add(x[worker][task]);
  }
  model.addAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

С#

// Each worker is assigned to at most one task.
for (int worker = 0; worker < numWorkers; ++worker)
{
    List<ILiteral> tasks = new List<ILiteral>();
    for (int task = 0; task < numTasks; ++task)
    {
        tasks.Add(x[worker, task]);
    }
    model.AddAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task = 0; task < numTasks; ++task)
{
    List<ILiteral> workers = new List<ILiteral>();
    for (int worker = 0; worker < numWorkers; ++worker)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

Создайте целевую функцию

Следующий код создает целевую функцию для задачи.

Питон

model.minimize(data.cost.dot(x))

С++

LinearExpr total_cost;
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    total_cost += x[i][j] * costs[i][j];
  }
}
cp_model.Minimize(total_cost);

Ява

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

С#

LinearExprBuilder obj = LinearExpr.NewBuilder();
for (int worker = 0; worker < numWorkers; ++worker)
{
    for (int task = 0; task < numTasks; ++task)
    {
        obj.AddTerm((IntVar)x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

Значение целевой функции — это общая стоимость всех переменных, которым решатель присваивает значение 1.

Вызов решателя

Следующий код вызывает решатель.

Питон

solver = cp_model.CpSolver()
status = solver.solve(model)

С++

const CpSolverResponse response = Solve(cp_model.Build());

Ява

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

С#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

Следующий код выводит решение проблемы.

Питон

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Total cost = {solver.objective_value}\n")
    selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index]
    for unused_index, row in selected.iterrows():
        print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}")
elif status == cp_model.INFEASIBLE:
    print("No solution found")
else:
    print("Something is wrong, check the status and the log of the solve")

С++

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}

LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int i = 0; i < num_workers; ++i) {
  for (int j = 0; j < num_tasks; ++j) {
    if (SolutionBooleanValue(response, x[i][j])) {
      LOG(INFO) << "Task " << i << " assigned to worker " << j
                << ".  Cost: " << costs[i][j];
    }
  }
}

Ява

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int i = 0; i < numWorkers; ++i) {
    for (int j = 0; j < numTasks; ++j) {
      if (solver.booleanValue(x[i][j])) {
        System.out.println(
            "Worker " + i + " assigned to task " + j + ".  Cost: " + costs[i][j]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

С#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    for (int i = 0; i < numWorkers; ++i)
    {
        for (int j = 0; j < numTasks; ++j)
        {
            if (solver.Value(x[i, j]) > 0.5)
            {
                Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

Вот результат работы программы.

Total cost = 265

Worker  0  assigned to task  3   Cost =  70
Worker  1  assigned to task  2   Cost =  55
Worker  2  assigned to task  1   Cost =  95
Worker  3  assigned to task  0   Cost =  45

Полные программы

Вот полные программы для решения CP-SAT.

Питон

import io

import pandas as pd

from ortools.sat.python import cp_model


def main() -> None:
    # Data
    data_str = """
  worker  task  cost
      w1    t1    90
      w1    t2    80
      w1    t3    75
      w1    t4    70
      w2    t1    35
      w2    t2    85
      w2    t3    55
      w2    t4    65
      w3    t1   125
      w3    t2    95
      w3    t3    90
      w3    t4    95
      w4    t1    45
      w4    t2   110
      w4    t3    95
      w4    t4   115
      w5    t1    50
      w5    t2   110
      w5    t3    90
      w5    t4   100
  """

    data = pd.read_table(io.StringIO(data_str), sep=r"\s+")

    # Model
    model = cp_model.CpModel()

    # Variables
    x = model.new_bool_var_series(name="x", index=data.index)

    # Constraints
    # Each worker is assigned to at most one task.
    for unused_name, tasks in data.groupby("worker"):
        model.add_at_most_one(x[tasks.index])

    # Each task is assigned to exactly one worker.
    for unused_name, workers in data.groupby("task"):
        model.add_exactly_one(x[workers.index])

    # Objective
    model.minimize(data.cost.dot(x))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Total cost = {solver.objective_value}\n")
        selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index]
        for unused_index, row in selected.iterrows():
            print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}")
    elif status == cp_model.INFEASIBLE:
        print("No solution found")
    else:
        print("Something is wrong, check the status and the log of the solve")


if __name__ == "__main__":
    main()

С++

#include <stdlib.h>

#include <vector>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void IntegerProgrammingExample() {
  // Data
  const std::vector<std::vector<int>> costs{
      {90, 80, 75, 70},   {35, 85, 55, 65},   {125, 95, 90, 95},
      {45, 110, 95, 115}, {50, 100, 90, 100},
  };
  const int num_workers = static_cast<int>(costs.size());
  const int num_tasks = static_cast<int>(costs[0].size());

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      x[i][j] = cp_model.NewBoolVar();
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int i = 0; i < num_workers; ++i) {
    cp_model.AddAtMostOne(x[i]);
  }
  // Each task is assigned to exactly one worker.
  for (int j = 0; j < num_tasks; ++j) {
    std::vector<BoolVar> tasks;
    for (int i = 0; i < num_workers; ++i) {
      tasks.push_back(x[i][j]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Objective
  LinearExpr total_cost;
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      total_cost += x[i][j] * costs[i][j];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }

  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int i = 0; i < num_workers; ++i) {
    for (int j = 0; j < num_tasks; ++j) {
      if (SolutionBooleanValue(response, x[i][j])) {
        LOG(INFO) << "Task " << i << " assigned to worker " << j
                  << ".  Cost: " << costs[i][j];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::IntegerProgrammingExample();
  return EXIT_SUCCESS;
}

Ява

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 80, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 95},
        {45, 110, 95, 115},
        {50, 100, 90, 100},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      List<Literal> tasks = new ArrayList<>();
      for (int task : allTasks) {
        tasks.add(x[worker][task]);
      }
      model.addAtMostOne(tasks);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int i = 0; i < numWorkers; ++i) {
        for (int j = 0; j < numTasks; ++j) {
          if (solver.booleanValue(x[i][j])) {
            System.out.println(
                "Worker " + i + " assigned to task " + j + ".  Cost: " + costs[i][j]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentSat() {}
}

С#

using System;
using System.Collections.Generic;
using Google.OrTools.Sat;

public class AssignmentSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        // Variables in a 1-dim array.
        for (int worker = 0; worker < numWorkers; ++worker)
        {
            for (int task = 0; task < numTasks; ++task)
            {
                x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        for (int worker = 0; worker < numWorkers; ++worker)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            for (int task = 0; task < numTasks; ++task)
            {
                tasks.Add(x[worker, task]);
            }
            model.AddAtMostOne(tasks);
        }

        // Each task is assigned to exactly one worker.
        for (int task = 0; task < numTasks; ++task)
        {
            List<ILiteral> workers = new List<ILiteral>();
            for (int worker = 0; worker < numWorkers; ++worker)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        for (int worker = 0; worker < numWorkers; ++worker)
        {
            for (int task = 0; task < numTasks; ++task)
            {
                obj.AddTerm((IntVar)x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            for (int i = 0; i < numWorkers; ++i)
            {
                for (int j = 0; j < numTasks; ++j)
                {
                    if (solver.Value(x[i, j]) > 0.5)
                    {
                        Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}