本節舉例說明 解題方式 使用 MIP 解析器和 CP-SAT 解析器。
範例
在此範例中,有五個工作站 (編號 0 到 4) 和四個工作 (編號為 0 到 4) 0 至 3)。請注意,本例中只有一個工作站 總覽:
將工作站指派給工作的費用會顯示在 資料表。
工作站 | 任務 0 | 工作 1 | 工作 2 | 工作 3 |
---|---|---|---|---|
0 | 90 | 80 | 75 | 70 |
1 | 35 | 85 | 55 | 65 |
2 | 125 | 95 | 90 | 95 |
3 | 45 | 110 | 95 | 115 |
4 | 50 | 100 | 90 | 100 |
問題是將每個工作站指派至最多一項工作 沒有兩位工作站 同時將總費用減至最低 工作站數量超過 1 個工作站不會被指派工作
MIP 解決方案
以下各節說明如何使用 MPSolver 包裝函式。
匯入程式庫
下列程式碼會匯入必要的程式庫。
Python
from ortools.linear_solver import pywraplp
C++
#include <memory> #include <vector> #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable;
C#
using System; using Google.OrTools.LinearSolver;
建立資料
下列程式碼會建立問題資料。
Python
costs = [ [90, 80, 75, 70], [35, 85, 55, 65], [125, 95, 90, 95], [45, 110, 95, 115], [50, 100, 90, 100], ] num_workers = len(costs) num_tasks = len(costs[0])
C++
const std::vector<std::vector<double>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = costs.size(); const int num_tasks = costs[0].size();
Java
double[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; int numWorkers = costs.length; int numTasks = costs[0].length;
C#
int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1);
costs
陣列對應到費用的「表」
將工作站指派給工作,如上所示。
宣告 MIP 解析器
下列程式碼宣告 MIP 解析器。
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
建立變數
下列程式碼會為問題建立二進位整數變數。
Python
# x[i, j] is an array of 0-1 variables, which will be 1 # if worker i is assigned to task j. x = {} for i in range(num_workers): for j in range(num_tasks): x[i, j] = solver.IntVar(0, 1, "")
C++
// x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector<std::vector<const MPVariable*>> x( num_workers, std::vector<const MPVariable*>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = solver->MakeIntVar(0, 1, ""); } }
Java
// x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. MPVariable[][] x = new MPVariable[numWorkers][numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i][j] = solver.makeIntVar(0, 1, ""); } }
C#
// x[i, j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. Variable[,] x = new Variable[numWorkers, numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}"); } }
建立限制
下列程式碼會建立問題限制條件。
Python
# Each worker is assigned to at most 1 task. for i in range(num_workers): solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1) # Each task is assigned to exactly one worker. for j in range(num_tasks): solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1)
C++
// Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { LinearExpr worker_sum; for (int j = 0; j < num_tasks; ++j) { worker_sum += x[i][j]; } solver->MakeRowConstraint(worker_sum <= 1.0); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { LinearExpr task_sum; for (int i = 0; i < num_workers; ++i) { task_sum += x[i][j]; } solver->MakeRowConstraint(task_sum == 1.0); }
Java
// Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { MPConstraint constraint = solver.makeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.setCoefficient(x[i][j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.setCoefficient(x[i][j], 1); } }
C#
// Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { Constraint constraint = solver.MakeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.SetCoefficient(x[i, j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { Constraint constraint = solver.MakeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.SetCoefficient(x[i, j], 1); } }
建立目標函式
下列程式碼會建立問題的目標函式。
Python
objective_terms = [] for i in range(num_workers): for j in range(num_tasks): objective_terms.append(costs[i][j] * x[i, j]) solver.Minimize(solver.Sum(objective_terms))
C++
MPObjective* const objective = solver->MutableObjective(); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { objective->SetCoefficient(x[i][j], costs[i][j]); } } objective->SetMinimization();
Java
MPObjective objective = solver.objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.setCoefficient(x[i][j], costs[i][j]); } } objective.setMinimization();
C#
Objective objective = solver.Objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.SetCoefficient(x[i, j], costs[i, j]); } } objective.SetMinimization();
目標函式的值就是指派給該事件的所有變數的總費用。 求出題。
叫用解題工具
下列程式碼會叫用解題工具。
Python
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve()
C++
const MPSolver::ResultStatus result_status = solver->Solve();
Java
MPSolver.ResultStatus resultStatus = solver.solve();
C#
Solver.ResultStatus resultStatus = solver.Solve();
列印解決方案
下列程式碼會顯示問題的解決方案。
Python
if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE: print(f"Total cost = {solver.Objective().Value()}\n") for i in range(num_workers): for j in range(num_tasks): # Test if x[i,j] is 1 (with tolerance for floating point arithmetic). if x[i, j].solution_value() > 0.5: print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}") else: print("No solution found.")
C++
// Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL && result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j]->solution_value() > 0.5) { LOG(INFO) << "Worker " << i << " assigned to task " << j << ". Cost = " << costs[i][j]; } } }
Java
// Check that the problem has a feasible solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL || resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.out.println("Total cost: " + objective.value() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j].solutionValue() > 0.5) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost = " + costs[i][j]); } } } } else { System.err.println("No solution found."); }
C#
// Check that the problem has a feasible solution. if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine($"Total cost: {solver.Objective().Value()}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i, j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i, j].SolutionValue() > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); }
以下是程式的輸出內容。
Total cost = 265.0 Worker 0 assigned to task 3. Cost = 70 Worker 1 assigned to task 2. Cost = 55 Worker 2 assigned to task 1. Cost = 95 Worker 3 assigned to task 0. Cost = 45
完成計畫
以下是 MIP 解決方案的完整計畫。
Python
from ortools.linear_solver import pywraplp def main(): # Data costs = [ [90, 80, 75, 70], [35, 85, 55, 65], [125, 95, 90, 95], [45, 110, 95, 115], [50, 100, 90, 100], ] num_workers = len(costs) num_tasks = len(costs[0]) # Solver # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return # Variables # x[i, j] is an array of 0-1 variables, which will be 1 # if worker i is assigned to task j. x = {} for i in range(num_workers): for j in range(num_tasks): x[i, j] = solver.IntVar(0, 1, "") # Constraints # Each worker is assigned to at most 1 task. for i in range(num_workers): solver.Add(solver.Sum([x[i, j] for j in range(num_tasks)]) <= 1) # Each task is assigned to exactly one worker. for j in range(num_tasks): solver.Add(solver.Sum([x[i, j] for i in range(num_workers)]) == 1) # Objective objective_terms = [] for i in range(num_workers): for j in range(num_tasks): objective_terms.append(costs[i][j] * x[i, j]) solver.Minimize(solver.Sum(objective_terms)) # Solve print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() # Print solution. if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE: print(f"Total cost = {solver.Objective().Value()}\n") for i in range(num_workers): for j in range(num_tasks): # Test if x[i,j] is 1 (with tolerance for floating point arithmetic). if x[i, j].solution_value() > 0.5: print(f"Worker {i} assigned to task {j}." + f" Cost: {costs[i][j]}") else: print("No solution found.") if __name__ == "__main__": main()
C++
#include <memory> #include <vector> #include "ortools/base/logging.h" #include "ortools/linear_solver/linear_solver.h" namespace operations_research { void AssignmentMip() { // Data const std::vector<std::vector<double>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = costs.size(); const int num_tasks = costs[0].size(); // Solver // Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; } // Variables // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. std::vector<std::vector<const MPVariable*>> x( num_workers, std::vector<const MPVariable*>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = solver->MakeIntVar(0, 1, ""); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { LinearExpr worker_sum; for (int j = 0; j < num_tasks; ++j) { worker_sum += x[i][j]; } solver->MakeRowConstraint(worker_sum <= 1.0); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { LinearExpr task_sum; for (int i = 0; i < num_workers; ++i) { task_sum += x[i][j]; } solver->MakeRowConstraint(task_sum == 1.0); } // Objective. MPObjective* const objective = solver->MutableObjective(); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { objective->SetCoefficient(x[i][j], costs[i][j]); } } objective->SetMinimization(); // Solve const MPSolver::ResultStatus result_status = solver->Solve(); // Print solution. // Check that the problem has a feasible solution. if (result_status != MPSolver::OPTIMAL && result_status != MPSolver::FEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost = " << objective->Value() << "\n\n"; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j]->solution_value() > 0.5) { LOG(INFO) << "Worker " << i << " assigned to task " << j << ". Cost = " << costs[i][j]; } } } } } // namespace operations_research int main(int argc, char** argv) { operations_research::AssignmentMip(); return EXIT_SUCCESS; }
Java
package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; /** MIP example that solves an assignment problem. */ public class AssignmentMip { public static void main(String[] args) { Loader.loadNativeLibraries(); // Data double[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; int numWorkers = costs.length; int numTasks = costs[0].length; // Solver // Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; } // Variables // x[i][j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. MPVariable[][] x = new MPVariable[numWorkers][numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i][j] = solver.makeIntVar(0, 1, ""); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { MPConstraint constraint = solver.makeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.setCoefficient(x[i][j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.setCoefficient(x[i][j], 1); } } // Objective MPObjective objective = solver.objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.setCoefficient(x[i][j], costs[i][j]); } } objective.setMinimization(); // Solve MPSolver.ResultStatus resultStatus = solver.solve(); // Print solution. // Check that the problem has a feasible solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL || resultStatus == MPSolver.ResultStatus.FEASIBLE) { System.out.println("Total cost: " + objective.value() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i][j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i][j].solutionValue() > 0.5) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost = " + costs[i][j]); } } } } else { System.err.println("No solution found."); } } private AssignmentMip() {} }
C#
using System; using Google.OrTools.LinearSolver; public class AssignmentMip { static void Main() { // Data. int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); // Solver. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; } // Variables. // x[i, j] is an array of 0-1 variables, which will be 1 // if worker i is assigned to task j. Variable[,] x = new Variable[numWorkers, numTasks]; for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}"); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < numWorkers; ++i) { Constraint constraint = solver.MakeConstraint(0, 1, ""); for (int j = 0; j < numTasks; ++j) { constraint.SetCoefficient(x[i, j], 1); } } // Each task is assigned to exactly one worker. for (int j = 0; j < numTasks; ++j) { Constraint constraint = solver.MakeConstraint(1, 1, ""); for (int i = 0; i < numWorkers; ++i) { constraint.SetCoefficient(x[i, j], 1); } } // Objective Objective objective = solver.Objective(); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { objective.SetCoefficient(x[i, j], costs[i, j]); } } objective.SetMinimization(); // Solve Solver.ResultStatus resultStatus = solver.Solve(); // Print solution. // Check that the problem has a feasible solution. if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE) { Console.WriteLine($"Total cost: {solver.Objective().Value()}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { // Test if x[i, j] is 0 or 1 (with tolerance for floating point // arithmetic). if (x[i, j].SolutionValue() > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); } } }
CP SAT 解決方案
以下各節說明如何使用 CP-SAT 解析器解決問題。
匯入程式庫
下列程式碼會匯入必要的程式庫。
Python
import io import pandas as pd from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <vector> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream;
C#
using System; using System.Collections.Generic; using Google.OrTools.Sat;
宣告模型
下列程式碼宣告 CP-SAT 模型。
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
建立資料
下方程式碼會設定問題資料。
Python
data_str = """ worker task cost w1 t1 90 w1 t2 80 w1 t3 75 w1 t4 70 w2 t1 35 w2 t2 85 w2 t3 55 w2 t4 65 w3 t1 125 w3 t2 95 w3 t3 90 w3 t4 95 w4 t1 45 w4 t2 110 w4 t3 95 w4 t4 115 w5 t1 50 w5 t2 110 w5 t3 90 w5 t4 100 """ data = pd.read_table(io.StringIO(data_str), sep=r"\s+")
C++
const std::vector<std::vector<int>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = static_cast<int>(costs.size()); const int num_tasks = static_cast<int>(costs[0].size());
Java
int[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; final int numWorkers = costs.length; final int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray();
C#
int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1);
costs
陣列對應到費用的「表」
將工作站指派給工作,如上所示。
建立變數
下列程式碼會為問題建立二進位整數變數。
Python
x = model.new_bool_var_series(name="x", index=data.index)
C++
// x[i][j] is an array of Boolean variables. x[i][j] is true // if worker i is assigned to task j. std::vector<std::vector<BoolVar>> x(num_workers, std::vector<BoolVar>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = cp_model.NewBoolVar(); } }
Java
Literal[][] x = new Literal[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]"); } }
C#
BoolVar[,] x = new BoolVar[numWorkers, numTasks]; // Variables in a 1-dim array. for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}"); } }
建立限制
下列程式碼會建立問題限制條件。
Python
# Each worker is assigned to at most one task. for unused_name, tasks in data.groupby("worker"): model.add_at_most_one(x[tasks.index]) # Each task is assigned to exactly one worker. for unused_name, workers in data.groupby("task"): model.add_exactly_one(x[workers.index])
C++
// Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { cp_model.AddAtMostOne(x[i]); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { std::vector<BoolVar> tasks; for (int i = 0; i < num_workers; ++i) { tasks.push_back(x[i][j]); } cp_model.AddExactlyOne(tasks); }
Java
// Each worker is assigned to at most one task. for (int worker : allWorkers) { List<Literal> tasks = new ArrayList<>(); for (int task : allTasks) { tasks.add(x[worker][task]); } model.addAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task : allTasks) { List<Literal> workers = new ArrayList<>(); for (int worker : allWorkers) { workers.add(x[worker][task]); } model.addExactlyOne(workers); }
C#
// Each worker is assigned to at most one task. for (int worker = 0; worker < numWorkers; ++worker) { List<ILiteral> tasks = new List<ILiteral>(); for (int task = 0; task < numTasks; ++task) { tasks.Add(x[worker, task]); } model.AddAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task = 0; task < numTasks; ++task) { List<ILiteral> workers = new List<ILiteral>(); for (int worker = 0; worker < numWorkers; ++worker) { workers.Add(x[worker, task]); } model.AddExactlyOne(workers); }
建立目標函式
下列程式碼會建立問題的目標函式。
Python
model.minimize(data.cost.dot(x))
C++
LinearExpr total_cost; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { total_cost += x[i][j] * costs[i][j]; } } cp_model.Minimize(total_cost);
Java
LinearExprBuilder obj = LinearExpr.newBuilder(); for (int worker : allWorkers) { for (int task : allTasks) { obj.addTerm(x[worker][task], costs[worker][task]); } } model.minimize(obj);
C#
LinearExprBuilder obj = LinearExpr.NewBuilder(); for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { obj.AddTerm((IntVar)x[worker, task], costs[worker, task]); } } model.Minimize(obj);
目標函式的值就是指派給該事件的所有變數的總費用。 求出題。
叫用解題工具
下列程式碼會叫用解題工具。
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}");
列印解決方案
下列程式碼會顯示問題的解決方案。
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Total cost = {solver.objective_value}\n") selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index] for unused_index, row in selected.iterrows(): print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}") elif status == cp_model.INFEASIBLE: print("No solution found") else: print("Something is wrong, check the status and the log of the solve")
C++
if (response.status() == CpSolverStatus::INFEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost: " << response.objective_value(); LOG(INFO); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { if (SolutionBooleanValue(response, x[i][j])) { LOG(INFO) << "Task " << i << " assigned to worker " << j << ". Cost: " << costs[i][j]; } } }
Java
// Check that the problem has a feasible solution. if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("Total cost: " + solver.objectiveValue() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.booleanValue(x[i][j])) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost: " + costs[i][j]); } } } } else { System.err.println("No solution found."); }
C#
// Check that the problem has a feasible solution. if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.Value(x[i, j]) > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); }
以下是程式的輸出內容。
Total cost = 265 Worker 0 assigned to task 3 Cost = 70 Worker 1 assigned to task 2 Cost = 55 Worker 2 assigned to task 1 Cost = 95 Worker 3 assigned to task 0 Cost = 45
完成計畫
以下是 CP-SAT 解決方案的完整計畫。
Python
import io import pandas as pd from ortools.sat.python import cp_model def main() -> None: # Data data_str = """ worker task cost w1 t1 90 w1 t2 80 w1 t3 75 w1 t4 70 w2 t1 35 w2 t2 85 w2 t3 55 w2 t4 65 w3 t1 125 w3 t2 95 w3 t3 90 w3 t4 95 w4 t1 45 w4 t2 110 w4 t3 95 w4 t4 115 w5 t1 50 w5 t2 110 w5 t3 90 w5 t4 100 """ data = pd.read_table(io.StringIO(data_str), sep=r"\s+") # Model model = cp_model.CpModel() # Variables x = model.new_bool_var_series(name="x", index=data.index) # Constraints # Each worker is assigned to at most one task. for unused_name, tasks in data.groupby("worker"): model.add_at_most_one(x[tasks.index]) # Each task is assigned to exactly one worker. for unused_name, workers in data.groupby("task"): model.add_exactly_one(x[workers.index]) # Objective model.minimize(data.cost.dot(x)) # Solve solver = cp_model.CpSolver() status = solver.solve(model) # Print solution. if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Total cost = {solver.objective_value}\n") selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index] for unused_index, row in selected.iterrows(): print(f"{row.task} assigned to {row.worker} with a cost of {row.cost}") elif status == cp_model.INFEASIBLE: print("No solution found") else: print("Something is wrong, check the status and the log of the solve") if __name__ == "__main__": main()
C++
#include <stdlib.h> #include <vector> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" namespace operations_research { namespace sat { void IntegerProgrammingExample() { // Data const std::vector<std::vector<int>> costs{ {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; const int num_workers = static_cast<int>(costs.size()); const int num_tasks = static_cast<int>(costs[0].size()); // Model CpModelBuilder cp_model; // Variables // x[i][j] is an array of Boolean variables. x[i][j] is true // if worker i is assigned to task j. std::vector<std::vector<BoolVar>> x(num_workers, std::vector<BoolVar>(num_tasks)); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { x[i][j] = cp_model.NewBoolVar(); } } // Constraints // Each worker is assigned to at most one task. for (int i = 0; i < num_workers; ++i) { cp_model.AddAtMostOne(x[i]); } // Each task is assigned to exactly one worker. for (int j = 0; j < num_tasks; ++j) { std::vector<BoolVar> tasks; for (int i = 0; i < num_workers; ++i) { tasks.push_back(x[i][j]); } cp_model.AddExactlyOne(tasks); } // Objective LinearExpr total_cost; for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { total_cost += x[i][j] * costs[i][j]; } } cp_model.Minimize(total_cost); // Solve const CpSolverResponse response = Solve(cp_model.Build()); // Print solution. if (response.status() == CpSolverStatus::INFEASIBLE) { LOG(FATAL) << "No solution found."; } LOG(INFO) << "Total cost: " << response.objective_value(); LOG(INFO); for (int i = 0; i < num_workers; ++i) { for (int j = 0; j < num_tasks; ++j) { if (SolutionBooleanValue(response, x[i][j])) { LOG(INFO) << "Task " << i << " assigned to worker " << j << ". Cost: " << costs[i][j]; } } } } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::IntegerProgrammingExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.LinearExpr; import com.google.ortools.sat.LinearExprBuilder; import com.google.ortools.sat.Literal; import java.util.ArrayList; import java.util.List; import java.util.stream.IntStream; /** Assignment problem. */ public class AssignmentSat { public static void main(String[] args) { Loader.loadNativeLibraries(); // Data int[][] costs = { {90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95}, {45, 110, 95, 115}, {50, 100, 90, 100}, }; final int numWorkers = costs.length; final int numTasks = costs[0].length; final int[] allWorkers = IntStream.range(0, numWorkers).toArray(); final int[] allTasks = IntStream.range(0, numTasks).toArray(); // Model CpModel model = new CpModel(); // Variables Literal[][] x = new Literal[numWorkers][numTasks]; for (int worker : allWorkers) { for (int task : allTasks) { x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]"); } } // Constraints // Each worker is assigned to at most one task. for (int worker : allWorkers) { List<Literal> tasks = new ArrayList<>(); for (int task : allTasks) { tasks.add(x[worker][task]); } model.addAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task : allTasks) { List<Literal> workers = new ArrayList<>(); for (int worker : allWorkers) { workers.add(x[worker][task]); } model.addExactlyOne(workers); } // Objective LinearExprBuilder obj = LinearExpr.newBuilder(); for (int worker : allWorkers) { for (int task : allTasks) { obj.addTerm(x[worker][task], costs[worker][task]); } } model.minimize(obj); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); // Print solution. // Check that the problem has a feasible solution. if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("Total cost: " + solver.objectiveValue() + "\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.booleanValue(x[i][j])) { System.out.println( "Worker " + i + " assigned to task " + j + ". Cost: " + costs[i][j]); } } } } else { System.err.println("No solution found."); } } private AssignmentSat() {} }
C#
using System; using System.Collections.Generic; using Google.OrTools.Sat; public class AssignmentSat { public static void Main(String[] args) { // Data. int[,] costs = { { 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 }, }; int numWorkers = costs.GetLength(0); int numTasks = costs.GetLength(1); // Model. CpModel model = new CpModel(); // Variables. BoolVar[,] x = new BoolVar[numWorkers, numTasks]; // Variables in a 1-dim array. for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { x[worker, task] = model.NewBoolVar($"worker_{worker}_task_{task}"); } } // Constraints // Each worker is assigned to at most one task. for (int worker = 0; worker < numWorkers; ++worker) { List<ILiteral> tasks = new List<ILiteral>(); for (int task = 0; task < numTasks; ++task) { tasks.Add(x[worker, task]); } model.AddAtMostOne(tasks); } // Each task is assigned to exactly one worker. for (int task = 0; task < numTasks; ++task) { List<ILiteral> workers = new List<ILiteral>(); for (int worker = 0; worker < numWorkers; ++worker) { workers.Add(x[worker, task]); } model.AddExactlyOne(workers); } // Objective LinearExprBuilder obj = LinearExpr.NewBuilder(); for (int worker = 0; worker < numWorkers; ++worker) { for (int task = 0; task < numTasks; ++task) { obj.AddTerm((IntVar)x[worker, task], costs[worker, task]); } } model.Minimize(obj); // Solve CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); Console.WriteLine($"Solve status: {status}"); // Print solution. // Check that the problem has a feasible solution. if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n"); for (int i = 0; i < numWorkers; ++i) { for (int j = 0; j < numTasks; ++j) { if (solver.Value(x[i, j]) > 0.5) { Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}"); } } } } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" - conflicts : {solver.NumConflicts()}"); Console.WriteLine($" - branches : {solver.NumBranches()}"); Console.WriteLine($" - wall time : {solver.WallTime()}s"); } }