কর্মীদের দলের সাথে অ্যাসাইনমেন্ট

অ্যাসাইনমেন্ট সমস্যার অনেকগুলি সংস্করণ রয়েছে, যার কর্মীদের বা কাজের অতিরিক্ত সীমাবদ্ধতা রয়েছে। পরবর্তী উদাহরণে, ছয়জন কর্মীকে দুটি দলে ভাগ করা হয়েছে, এবং প্রতিটি দল সর্বাধিক দুটি কাজ সম্পাদন করতে পারে।

নিম্নলিখিত বিভাগগুলি একটি পাইথন প্রোগ্রাম উপস্থাপন করে যা CP-SAT বা MIP সমাধান ব্যবহার করে এই সমস্যার সমাধান করে। ন্যূনতম খরচ ফ্লো সলভার ব্যবহার করে সমাধানের জন্য, দলগুলির সাথে অ্যাসাইনমেন্ট বিভাগটি দেখুন।

CP-SAT সমাধান

প্রথমে, আসুন CP-SAT সমস্যাটির সমাধানটি দেখে নেওয়া যাক।

লাইব্রেরি আমদানি করুন

নিম্নলিখিত কোড প্রয়োজনীয় লাইব্রেরি আমদানি করে।

পাইথন

from ortools.sat.python import cp_model

সি++

#include <stdlib.h>

#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

জাভা

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

সি#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

ডেটা সংজ্ঞায়িত করুন

নিম্নলিখিত কোড প্রোগ্রামের জন্য ডেটা তৈরি করে।

পাইথন

costs = [
    [90, 76, 75, 70],
    [35, 85, 55, 65],
    [125, 95, 90, 105],
    [45, 110, 95, 115],
    [60, 105, 80, 75],
    [45, 65, 110, 95],
]
num_workers = len(costs)
num_tasks = len(costs[0])

team1 = [0, 2, 4]
team2 = [1, 3, 5]
# Maximum total of tasks for any team
team_max = 2

সি++

const std::vector<std::vector<int>> costs = {{
    {{90, 76, 75, 70}},
    {{35, 85, 55, 65}},
    {{125, 95, 90, 105}},
    {{45, 110, 95, 115}},
    {{60, 105, 80, 75}},
    {{45, 65, 110, 95}},
}};
const int num_workers = static_cast<int>(costs.size());
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = static_cast<int>(costs[0].size());
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<int> team1 = {{0, 2, 4}};
const std::vector<int> team2 = {{1, 3, 5}};
// Maximum total of tasks for any team
const int team_max = 2;

জাভা

int[][] costs = {
    {90, 76, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 105},
    {45, 110, 95, 115},
    {60, 105, 80, 75},
    {45, 65, 110, 95},
};
final int numWorkers = costs.length;
final int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

final int[] team1 = {0, 2, 4};
final int[] team2 = {1, 3, 5};
// Maximum total of tasks for any team
final int teamMax = 2;

সি#

int[,] costs = {
    { 90, 76, 75, 70 },   { 35, 85, 55, 65 },  { 125, 95, 90, 105 },
    { 45, 110, 95, 115 }, { 60, 105, 80, 75 }, { 45, 65, 110, 95 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

int[] team1 = { 0, 2, 4 };
int[] team2 = { 1, 3, 5 };
// Maximum total of tasks for any team
int teamMax = 2;

মডেল তৈরি করুন

নিম্নলিখিত কোড মডেল তৈরি করে।

পাইথন

model = cp_model.CpModel()

সি++

CpModelBuilder cp_model;

জাভা

CpModel model = new CpModel();

সি#

CpModel model = new CpModel();

ভেরিয়েবল তৈরি করুন

নিম্নলিখিত কোডটি সমস্যার জন্য ভেরিয়েবলের একটি অ্যারে তৈরি করে।

পাইথন

x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

সি++

// x[i][j] is an array of Boolean variables. x[i][j] is true
// if worker i is assigned to task j.
std::vector<std::vector<BoolVar>> x(num_workers,
                                    std::vector<BoolVar>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] = cp_model.NewBoolVar().WithName(
        absl::StrFormat("x[%d,%d]", worker, task));
  }
}

জাভা

Literal[][] x = new Literal[numWorkers][numTasks];
// Variables in a 1-dim array.
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
  }
}

সি#

BoolVar[,] x = new BoolVar[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
    }
}

একজন কর্মী এবং টাস্কের প্রতিটি জোড়ার জন্য একটি পরিবর্তনশীল রয়েছে। লক্ষ্য করুন যে শ্রমিকদের 0 - 5 নম্বর দেওয়া হয়েছে, যখন কাজগুলি 0 - 3 নম্বর দেওয়া হয়েছে, মূল উদাহরণের বিপরীতে, যেখানে সমস্ত নোডকে ন্যূনতম খরচ ফ্লো সল্ভারের প্রয়োজন অনুসারে আলাদাভাবে নম্বর দিতে হয়েছিল।

সীমাবদ্ধতা যোগ করুন

নিম্নলিখিত কোড প্রোগ্রামের জন্য সীমাবদ্ধতা তৈরি করে।

পাইথন

# Each worker is assigned to at most one task.
for worker in range(num_workers):
    model.add_at_most_one(x[worker, task] for task in range(num_tasks))

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    model.add_exactly_one(x[worker, task] for worker in range(num_workers))

# Each team takes at most two tasks.
team1_tasks = []
for worker in team1:
    for task in range(num_tasks):
        team1_tasks.append(x[worker, task])
model.add(sum(team1_tasks) <= team_max)

team2_tasks = []
for worker in team2:
    for task in range(num_tasks):
        team2_tasks.append(x[worker, task])
model.add(sum(team2_tasks) <= team_max)

সি++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  cp_model.AddAtMostOne(x[worker]);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  std::vector<BoolVar> tasks;
  for (int worker : all_workers) {
    tasks.push_back(x[worker][task]);
  }
  cp_model.AddExactlyOne(tasks);
}

// Each team takes at most two tasks.
LinearExpr team1_tasks;
for (int worker : team1) {
  for (int task : all_tasks) {
    team1_tasks += x[worker][task];
  }
}
cp_model.AddLessOrEqual(team1_tasks, team_max);

LinearExpr team2_tasks;
for (int worker : team2) {
  for (int task : all_tasks) {
    team2_tasks += x[worker][task];
  }
}
cp_model.AddLessOrEqual(team2_tasks, team_max);

জাভা

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  List<Literal> tasks = new ArrayList<>();
  for (int task : allTasks) {
    tasks.add(x[worker][task]);
  }
  model.addAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  List<Literal> workers = new ArrayList<>();
  for (int worker : allWorkers) {
    workers.add(x[worker][task]);
  }
  model.addExactlyOne(workers);
}

// Each team takes at most two tasks.
LinearExprBuilder team1Tasks = LinearExpr.newBuilder();
for (int worker : team1) {
  for (int task : allTasks) {
    team1Tasks.add(x[worker][task]);
  }
}
model.addLessOrEqual(team1Tasks, teamMax);

LinearExprBuilder team2Tasks = LinearExpr.newBuilder();
for (int worker : team2) {
  for (int task : allTasks) {
    team2Tasks.add(x[worker][task]);
  }
}
model.addLessOrEqual(team2Tasks, teamMax);

সি#

// Each worker is assigned to at most one task.
foreach (int worker in allWorkers)
{
    List<ILiteral> tasks = new List<ILiteral>();
    foreach (int task in allTasks)
    {
        tasks.Add(x[worker, task]);
    }
    model.AddAtMostOne(tasks);
}

// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    List<ILiteral> workers = new List<ILiteral>();
    foreach (int worker in allWorkers)
    {
        workers.Add(x[worker, task]);
    }
    model.AddExactlyOne(workers);
}

// Each team takes at most two tasks.
List<IntVar> team1Tasks = new List<IntVar>();
foreach (int worker in team1)
{
    foreach (int task in allTasks)
    {
        team1Tasks.Add(x[worker, task]);
    }
}
model.Add(LinearExpr.Sum(team1Tasks.ToArray()) <= teamMax);

List<IntVar> team2Tasks = new List<IntVar>();
foreach (int worker in team2)
{
    foreach (int task in allTasks)
    {
        team2Tasks.Add(x[worker, task]);
    }
}
model.Add(LinearExpr.Sum(team2Tasks.ToArray()) <= teamMax);

উদ্দেশ্য তৈরি করুন

নিম্নলিখিত কোডটি উদ্দেশ্য ফাংশন তৈরি করে।

পাইথন

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
model.minimize(sum(objective_terms))

সি++

LinearExpr total_cost;
for (int worker : all_workers) {
  for (int task : all_tasks) {
    total_cost += x[worker][task] * costs[worker][task];
  }
}
cp_model.Minimize(total_cost);

জাভা

LinearExprBuilder obj = LinearExpr.newBuilder();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    obj.addTerm(x[worker][task], costs[worker][task]);
  }
}
model.minimize(obj);

সি#

LinearExprBuilder obj = LinearExpr.NewBuilder();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        obj.AddTerm(x[worker, task], costs[worker, task]);
    }
}
model.Minimize(obj);

উদ্দেশ্য ফাংশনের মান হল সমস্ত ভেরিয়েবলের মোট খরচ যা সমাধানকারী দ্বারা 1 মান নির্ধারণ করা হয়েছে।

সমাধানকারীকে আহ্বান করুন

নিম্নলিখিত কোডটি সমাধানকারীকে আহ্বান করে এবং ফলাফলগুলি প্রদর্শন করে।

পাইথন

solver = cp_model.CpSolver()
status = solver.solve(model)

সি++

const CpSolverResponse response = Solve(cp_model.Build());

জাভা

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

সি#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);
Console.WriteLine($"Solve status: {status}");

ফলাফল প্রদর্শন করুন

এখন, আমরা সমাধান মুদ্রণ করতে পারেন.

পাইথন

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Total cost = {solver.objective_value}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if solver.boolean_value(x[worker, task]):
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost = {costs[worker][task]}"
                )
else:
    print("No solution found.")

সি++

if (response.status() == CpSolverStatus::INFEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost: " << response.objective_value();
LOG(INFO);
for (int worker : all_workers) {
  for (int task : all_tasks) {
    if (SolutionBooleanValue(response, x[worker][task])) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

জাভা

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("Total cost: " + solver.objectiveValue() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      if (solver.booleanValue(x[worker][task])) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

সি#

// Check that the problem has a feasible solution.
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            if (solver.Value(x[worker, task]) > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                  $"Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

এখানে প্রোগ্রামের আউটপুট.

Total cost:  250
Worker 0 assigned to task 2. Cost = 75
Worker 1 assigned to task 0. Cost = 35
Worker 4 assigned to task 3. Cost = 75
Worker 5 assigned to task 1. Cost = 65
Time =  6  milliseconds

পুরো প্রোগ্রাম

এখানে সম্পূর্ণ প্রোগ্রাম.

পাইথন

"""Solves a simple assignment problem."""
from ortools.sat.python import cp_model


def main() -> None:
    # Data
    costs = [
        [90, 76, 75, 70],
        [35, 85, 55, 65],
        [125, 95, 90, 105],
        [45, 110, 95, 115],
        [60, 105, 80, 75],
        [45, 65, 110, 95],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    team1 = [0, 2, 4]
    team2 = [1, 3, 5]
    # Maximum total of tasks for any team
    team_max = 2

    # Model
    model = cp_model.CpModel()

    # Variables
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = model.new_bool_var(f"x[{worker},{task}]")

    # Constraints
    # Each worker is assigned to at most one task.
    for worker in range(num_workers):
        model.add_at_most_one(x[worker, task] for task in range(num_tasks))

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        model.add_exactly_one(x[worker, task] for worker in range(num_workers))

    # Each team takes at most two tasks.
    team1_tasks = []
    for worker in team1:
        for task in range(num_tasks):
            team1_tasks.append(x[worker, task])
    model.add(sum(team1_tasks) <= team_max)

    team2_tasks = []
    for worker in team2:
        for task in range(num_tasks):
            team2_tasks.append(x[worker, task])
    model.add(sum(team2_tasks) <= team_max)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    model.minimize(sum(objective_terms))

    # Solve
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    # Print solution.
    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Total cost = {solver.objective_value}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if solver.boolean_value(x[worker, task]):
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost = {costs[worker][task]}"
                    )
    else:
        print("No solution found.")


if __name__ == "__main__":
    main()

সি++

// Solve a simple assignment problem.
#include <stdlib.h>

#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"

namespace operations_research {
namespace sat {

void AssignmentTeamsSat() {
  // Data
  const std::vector<std::vector<int>> costs = {{
      {{90, 76, 75, 70}},
      {{35, 85, 55, 65}},
      {{125, 95, 90, 105}},
      {{45, 110, 95, 115}},
      {{60, 105, 80, 75}},
      {{45, 65, 110, 95}},
  }};
  const int num_workers = static_cast<int>(costs.size());
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = static_cast<int>(costs[0].size());
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<int> team1 = {{0, 2, 4}};
  const std::vector<int> team2 = {{1, 3, 5}};
  // Maximum total of tasks for any team
  const int team_max = 2;

  // Model
  CpModelBuilder cp_model;

  // Variables
  // x[i][j] is an array of Boolean variables. x[i][j] is true
  // if worker i is assigned to task j.
  std::vector<std::vector<BoolVar>> x(num_workers,
                                      std::vector<BoolVar>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] = cp_model.NewBoolVar().WithName(
          absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    cp_model.AddAtMostOne(x[worker]);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    std::vector<BoolVar> tasks;
    for (int worker : all_workers) {
      tasks.push_back(x[worker][task]);
    }
    cp_model.AddExactlyOne(tasks);
  }

  // Each team takes at most two tasks.
  LinearExpr team1_tasks;
  for (int worker : team1) {
    for (int task : all_tasks) {
      team1_tasks += x[worker][task];
    }
  }
  cp_model.AddLessOrEqual(team1_tasks, team_max);

  LinearExpr team2_tasks;
  for (int worker : team2) {
    for (int task : all_tasks) {
      team2_tasks += x[worker][task];
    }
  }
  cp_model.AddLessOrEqual(team2_tasks, team_max);

  // Objective
  LinearExpr total_cost;
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      total_cost += x[worker][task] * costs[worker][task];
    }
  }
  cp_model.Minimize(total_cost);

  // Solve
  const CpSolverResponse response = Solve(cp_model.Build());

  // Print solution.
  if (response.status() == CpSolverStatus::INFEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost: " << response.objective_value();
  LOG(INFO);
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      if (SolutionBooleanValue(response, x[worker][task])) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::AssignmentTeamsSat();
  return EXIT_SUCCESS;
}

জাভা

// CP-SAT example that solves an assignment problem.
package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.LinearExpr;
import com.google.ortools.sat.LinearExprBuilder;
import com.google.ortools.sat.Literal;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.IntStream;

/** Assignment problem. */
public class AssignmentTeamsSat {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    int[][] costs = {
        {90, 76, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 105},
        {45, 110, 95, 115},
        {60, 105, 80, 75},
        {45, 65, 110, 95},
    };
    final int numWorkers = costs.length;
    final int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    final int[] team1 = {0, 2, 4};
    final int[] team2 = {1, 3, 5};
    // Maximum total of tasks for any team
    final int teamMax = 2;

    // Model
    CpModel model = new CpModel();

    // Variables
    Literal[][] x = new Literal[numWorkers][numTasks];
    // Variables in a 1-dim array.
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = model.newBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      List<Literal> tasks = new ArrayList<>();
      for (int task : allTasks) {
        tasks.add(x[worker][task]);
      }
      model.addAtMostOne(tasks);
    }

    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      List<Literal> workers = new ArrayList<>();
      for (int worker : allWorkers) {
        workers.add(x[worker][task]);
      }
      model.addExactlyOne(workers);
    }

    // Each team takes at most two tasks.
    LinearExprBuilder team1Tasks = LinearExpr.newBuilder();
    for (int worker : team1) {
      for (int task : allTasks) {
        team1Tasks.add(x[worker][task]);
      }
    }
    model.addLessOrEqual(team1Tasks, teamMax);

    LinearExprBuilder team2Tasks = LinearExpr.newBuilder();
    for (int worker : team2) {
      for (int task : allTasks) {
        team2Tasks.add(x[worker][task]);
      }
    }
    model.addLessOrEqual(team2Tasks, teamMax);

    // Objective
    LinearExprBuilder obj = LinearExpr.newBuilder();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        obj.addTerm(x[worker][task], costs[worker][task]);
      }
    }
    model.minimize(obj);

    // Solve
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    // Print solution.
    // Check that the problem has a feasible solution.
    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("Total cost: " + solver.objectiveValue() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          if (solver.booleanValue(x[worker][task])) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentTeamsSat() {}
}

সি#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;

public class AssignmentTeamsSat
{
    public static void Main(String[] args)
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70 },   { 35, 85, 55, 65 },  { 125, 95, 90, 105 },
            { 45, 110, 95, 115 }, { 60, 105, 80, 75 }, { 45, 65, 110, 95 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        int[] team1 = { 0, 2, 4 };
        int[] team2 = { 1, 3, 5 };
        // Maximum total of tasks for any team
        int teamMax = 2;

        // Model.
        CpModel model = new CpModel();

        // Variables.
        BoolVar[,] x = new BoolVar[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = model.NewBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        foreach (int worker in allWorkers)
        {
            List<ILiteral> tasks = new List<ILiteral>();
            foreach (int task in allTasks)
            {
                tasks.Add(x[worker, task]);
            }
            model.AddAtMostOne(tasks);
        }

        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            List<ILiteral> workers = new List<ILiteral>();
            foreach (int worker in allWorkers)
            {
                workers.Add(x[worker, task]);
            }
            model.AddExactlyOne(workers);
        }

        // Each team takes at most two tasks.
        List<IntVar> team1Tasks = new List<IntVar>();
        foreach (int worker in team1)
        {
            foreach (int task in allTasks)
            {
                team1Tasks.Add(x[worker, task]);
            }
        }
        model.Add(LinearExpr.Sum(team1Tasks.ToArray()) <= teamMax);

        List<IntVar> team2Tasks = new List<IntVar>();
        foreach (int worker in team2)
        {
            foreach (int task in allTasks)
            {
                team2Tasks.Add(x[worker, task]);
            }
        }
        model.Add(LinearExpr.Sum(team2Tasks.ToArray()) <= teamMax);

        // Objective
        LinearExprBuilder obj = LinearExpr.NewBuilder();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                obj.AddTerm(x[worker, task], costs[worker, task]);
            }
        }
        model.Minimize(obj);

        // Solve
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);
        Console.WriteLine($"Solve status: {status}");

        // Print solution.
        // Check that the problem has a feasible solution.
        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Total cost: {solver.ObjectiveValue}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    if (solver.Value(x[worker, task]) > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. " +
                                          $"Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  - conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  - branches  : {solver.NumBranches()}");
        Console.WriteLine($"  - wall time : {solver.WallTime()}s");
    }
}

এমআইপি সমাধান

এর পরে, আমরা MIP সল্ভার ব্যবহার করে এই অ্যাসাইনমেন্ট সমস্যার একটি সমাধান বর্ণনা করি।

লাইব্রেরি আমদানি করুন

নিম্নলিখিত কোড প্রয়োজনীয় লাইব্রেরি আমদানি করে।

পাইথন

from ortools.linear_solver import pywraplp

সি++

#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

জাভা

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

সি#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

ডেটা সংজ্ঞায়িত করুন

নিম্নলিখিত কোড প্রোগ্রামের জন্য ডেটা তৈরি করে।

পাইথন

costs = [
    [90, 76, 75, 70],
    [35, 85, 55, 65],
    [125, 95, 90, 105],
    [45, 110, 95, 115],
    [60, 105, 80, 75],
    [45, 65, 110, 95],
]
num_workers = len(costs)
num_tasks = len(costs[0])

team1 = [0, 2, 4]
team2 = [1, 3, 5]
# Maximum total of tasks for any team
team_max = 2

সি++

const std::vector<std::vector<int64_t>> costs = {{
    {{90, 76, 75, 70}},
    {{35, 85, 55, 65}},
    {{125, 95, 90, 105}},
    {{45, 110, 95, 115}},
    {{60, 105, 80, 75}},
    {{45, 65, 110, 95}},
}};
const int num_workers = costs.size();
std::vector<int> all_workers(num_workers);
std::iota(all_workers.begin(), all_workers.end(), 0);

const int num_tasks = costs[0].size();
std::vector<int> all_tasks(num_tasks);
std::iota(all_tasks.begin(), all_tasks.end(), 0);

const std::vector<int64_t> team1 = {{0, 2, 4}};
const std::vector<int64_t> team2 = {{1, 3, 5}};
// Maximum total of tasks for any team
const int team_max = 2;

জাভা

double[][] costs = {
    {90, 76, 75, 70},
    {35, 85, 55, 65},
    {125, 95, 90, 105},
    {45, 110, 95, 115},
    {60, 105, 80, 75},
    {45, 65, 110, 95},
};
int numWorkers = costs.length;
int numTasks = costs[0].length;

final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
final int[] allTasks = IntStream.range(0, numTasks).toArray();

final int[] team1 = {0, 2, 4};
final int[] team2 = {1, 3, 5};
// Maximum total of tasks for any team
final int teamMax = 2;

সি#

int[,] costs = {
    { 90, 76, 75, 70 },   { 35, 85, 55, 65 },  { 125, 95, 90, 105 },
    { 45, 110, 95, 115 }, { 60, 105, 80, 75 }, { 45, 65, 110, 95 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);

int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

int[] team1 = { 0, 2, 4 };
int[] team2 = { 1, 3, 5 };
// Maximum total of tasks for any team
int teamMax = 2;

সমাধানকারী ঘোষণা করুন

নিম্নলিখিত কোড সমাধানকারী তৈরি করে।

পাইথন

# Create the mip solver with the SCIP backend.
solver = pywraplp.Solver.CreateSolver("SCIP")
if not solver:
    return

সি++

// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
  LOG(WARNING) << "SCIP solver unavailable.";
  return;
}

জাভা

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

সি#

Solver solver = Solver.CreateSolver("SCIP");
if (solver is null)
{
    return;
}

ভেরিয়েবল তৈরি করুন

নিম্নলিখিত কোডটি সমস্যার জন্য ভেরিয়েবলের একটি অ্যারে তৈরি করে।

পাইথন

# x[i, j] is an array of 0-1 variables, which will be 1
# if worker i is assigned to task j.
x = {}
for worker in range(num_workers):
    for task in range(num_tasks):
        x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

সি++

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
    num_workers, std::vector<const MPVariable*>(num_tasks));
for (int worker : all_workers) {
  for (int task : all_tasks) {
    x[worker][task] =
        solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
  }
}

জাভা

// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
MPVariable[][] x = new MPVariable[numWorkers][numTasks];
for (int worker : allWorkers) {
  for (int task : allTasks) {
    x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
  }
}

সি#

// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
    }
}

সীমাবদ্ধতা যোগ করুন

নিম্নলিখিত কোড প্রোগ্রামের জন্য সীমাবদ্ধতা তৈরি করে।

পাইথন

# Each worker is assigned at most 1 task.
for worker in range(num_workers):
    solver.Add(solver.Sum([x[worker, task] for task in range(num_tasks)]) <= 1)

# Each task is assigned to exactly one worker.
for task in range(num_tasks):
    solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

# Each team takes at most two tasks.
team1_tasks = []
for worker in team1:
    for task in range(num_tasks):
        team1_tasks.append(x[worker, task])
solver.Add(solver.Sum(team1_tasks) <= team_max)

team2_tasks = []
for worker in team2:
    for task in range(num_tasks):
        team2_tasks.append(x[worker, task])
solver.Add(solver.Sum(team2_tasks) <= team_max)

সি++

// Each worker is assigned to at most one task.
for (int worker : all_workers) {
  LinearExpr worker_sum;
  for (int task : all_tasks) {
    worker_sum += x[worker][task];
  }
  solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int task : all_tasks) {
  LinearExpr task_sum;
  for (int worker : all_workers) {
    task_sum += x[worker][task];
  }
  solver->MakeRowConstraint(task_sum == 1.0);
}

// Each team takes at most two tasks.
LinearExpr team1_tasks;
for (int worker : team1) {
  for (int task : all_tasks) {
    team1_tasks += x[worker][task];
  }
}
solver->MakeRowConstraint(team1_tasks <= team_max);

LinearExpr team2_tasks;
for (int worker : team2) {
  for (int task : all_tasks) {
    team2_tasks += x[worker][task];
  }
}
solver->MakeRowConstraint(team2_tasks <= team_max);

জাভা

// Each worker is assigned to at most one task.
for (int worker : allWorkers) {
  MPConstraint constraint = solver.makeConstraint(0, 1, "");
  for (int task : allTasks) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}
// Each task is assigned to exactly one worker.
for (int task : allTasks) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int worker : allWorkers) {
    constraint.setCoefficient(x[worker][task], 1);
  }
}

// Each team takes at most two tasks.
MPConstraint team1Tasks = solver.makeConstraint(0, teamMax, "");
for (int worker : team1) {
  for (int task : allTasks) {
    team1Tasks.setCoefficient(x[worker][task], 1);
  }
}

MPConstraint team2Tasks = solver.makeConstraint(0, teamMax, "");
for (int worker : team2) {
  for (int task : allTasks) {
    team2Tasks.setCoefficient(x[worker][task], 1);
  }
}

সি#

// Each worker is assigned to at most one task.
foreach (int worker in allWorkers)
{
    Constraint constraint = solver.MakeConstraint(0, 1, "");
    foreach (int task in allTasks)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}
// Each task is assigned to exactly one worker.
foreach (int task in allTasks)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    foreach (int worker in allWorkers)
    {
        constraint.SetCoefficient(x[worker, task], 1);
    }
}

// Each team takes at most two tasks.
Constraint team1Tasks = solver.MakeConstraint(0, teamMax, "");
foreach (int worker in team1)
{
    foreach (int task in allTasks)
    {
        team1Tasks.SetCoefficient(x[worker, task], 1);
    }
}

Constraint team2Tasks = solver.MakeConstraint(0, teamMax, "");
foreach (int worker in team2)
{
    foreach (int task in allTasks)
    {
        team2Tasks.SetCoefficient(x[worker, task], 1);
    }
}

উদ্দেশ্য তৈরি করুন

নিম্নলিখিত কোডটি উদ্দেশ্য ফাংশন তৈরি করে।

পাইথন

objective_terms = []
for worker in range(num_workers):
    for task in range(num_tasks):
        objective_terms.append(costs[worker][task] * x[worker, task])
solver.Minimize(solver.Sum(objective_terms))

সি++

MPObjective* const objective = solver->MutableObjective();
for (int worker : all_workers) {
  for (int task : all_tasks) {
    objective->SetCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective->SetMinimization();

জাভা

MPObjective objective = solver.objective();
for (int worker : allWorkers) {
  for (int task : allTasks) {
    objective.setCoefficient(x[worker][task], costs[worker][task]);
  }
}
objective.setMinimization();

সি#

Objective objective = solver.Objective();
foreach (int worker in allWorkers)
{
    foreach (int task in allTasks)
    {
        objective.SetCoefficient(x[worker, task], costs[worker, task]);
    }
}
objective.SetMinimization();

সমাধানকারীকে আহ্বান করুন

নিম্নলিখিত কোডটি সমাধানকারীকে আহ্বান করে এবং ফলাফলগুলি প্রদর্শন করে।

পাইথন

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()

সি++

const MPSolver::ResultStatus result_status = solver->Solve();

জাভা

MPSolver.ResultStatus resultStatus = solver.solve();

সি#

Solver.ResultStatus resultStatus = solver.Solve();

ফলাফল প্রদর্শন করুন

এখন, আমরা সমাধান মুদ্রণ করতে পারেন.

পাইথন

if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
    print(f"Total cost = {solver.Objective().Value()}\n")
    for worker in range(num_workers):
        for task in range(num_tasks):
            if x[worker, task].solution_value() > 0.5:
                print(
                    f"Worker {worker} assigned to task {task}."
                    + f" Cost = {costs[worker][task]}"
                )
else:
    print("No solution found.")
print(f"Time = {solver.WallTime()} ms")

সি++

// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
    result_status != MPSolver::FEASIBLE) {
  LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int worker : all_workers) {
  for (int task : all_tasks) {
    // Test if x[i][j] is 0 or 1 (with tolerance for floating point
    // arithmetic).
    if (x[worker][task]->solution_value() > 0.5) {
      LOG(INFO) << "Worker " << worker << " assigned to task " << task
                << ".  Cost: " << costs[worker][task];
    }
  }
}

জাভা

// Check that the problem has a feasible solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL
    || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
  System.out.println("Total cost: " + objective.value() + "\n");
  for (int worker : allWorkers) {
    for (int task : allTasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task].solutionValue() > 0.5) {
        System.out.println("Worker " + worker + " assigned to task " + task
            + ".  Cost: " + costs[worker][task]);
      }
    }
  }
} else {
  System.err.println("No solution found.");
}

সি#

// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
    Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
    foreach (int worker in allWorkers)
    {
        foreach (int task in allTasks)
        {
            // Test if x[i, j] is 0 or 1 (with tolerance for floating point
            // arithmetic).
            if (x[worker, task].SolutionValue() > 0.5)
            {
                Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
            }
        }
    }
}
else
{
    Console.WriteLine("No solution found.");
}

এখানে প্রোগ্রামের আউটপুট আছে।

Minimum cost assignment:  250.0
Worker 0 assigned to task 2. Cost = 75
Worker 1 assigned to task 0. Cost = 35
Worker 4 assigned to task 3. Cost = 75
Worker 5 assigned to task 1. Cost = 65
Time =  6  milliseconds

পুরো প্রোগ্রাম

এখানে সম্পূর্ণ প্রোগ্রাম.

পাইথন

"""MIP example that solves an assignment problem."""
from ortools.linear_solver import pywraplp


def main():
    # Data
    costs = [
        [90, 76, 75, 70],
        [35, 85, 55, 65],
        [125, 95, 90, 105],
        [45, 110, 95, 115],
        [60, 105, 80, 75],
        [45, 65, 110, 95],
    ]
    num_workers = len(costs)
    num_tasks = len(costs[0])

    team1 = [0, 2, 4]
    team2 = [1, 3, 5]
    # Maximum total of tasks for any team
    team_max = 2

    # Solver
    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")
    if not solver:
        return

    # Variables
    # x[i, j] is an array of 0-1 variables, which will be 1
    # if worker i is assigned to task j.
    x = {}
    for worker in range(num_workers):
        for task in range(num_tasks):
            x[worker, task] = solver.BoolVar(f"x[{worker},{task}]")

    # Constraints
    # Each worker is assigned at most 1 task.
    for worker in range(num_workers):
        solver.Add(solver.Sum([x[worker, task] for task in range(num_tasks)]) <= 1)

    # Each task is assigned to exactly one worker.
    for task in range(num_tasks):
        solver.Add(solver.Sum([x[worker, task] for worker in range(num_workers)]) == 1)

    # Each team takes at most two tasks.
    team1_tasks = []
    for worker in team1:
        for task in range(num_tasks):
            team1_tasks.append(x[worker, task])
    solver.Add(solver.Sum(team1_tasks) <= team_max)

    team2_tasks = []
    for worker in team2:
        for task in range(num_tasks):
            team2_tasks.append(x[worker, task])
    solver.Add(solver.Sum(team2_tasks) <= team_max)

    # Objective
    objective_terms = []
    for worker in range(num_workers):
        for task in range(num_tasks):
            objective_terms.append(costs[worker][task] * x[worker, task])
    solver.Minimize(solver.Sum(objective_terms))

    # Solve
    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    # Print solution.
    if status == pywraplp.Solver.OPTIMAL or status == pywraplp.Solver.FEASIBLE:
        print(f"Total cost = {solver.Objective().Value()}\n")
        for worker in range(num_workers):
            for task in range(num_tasks):
                if x[worker, task].solution_value() > 0.5:
                    print(
                        f"Worker {worker} assigned to task {task}."
                        + f" Cost = {costs[worker][task]}"
                    )
    else:
        print("No solution found.")
    print(f"Time = {solver.WallTime()} ms")


if __name__ == "__main__":
    main()

সি++

// Solve a simple assignment problem.
#include <cstdint>
#include <memory>
#include <numeric>
#include <vector>

#include "absl/strings/str_format.h"
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
void AssignmentTeamsMip() {
  // Data
  const std::vector<std::vector<int64_t>> costs = {{
      {{90, 76, 75, 70}},
      {{35, 85, 55, 65}},
      {{125, 95, 90, 105}},
      {{45, 110, 95, 115}},
      {{60, 105, 80, 75}},
      {{45, 65, 110, 95}},
  }};
  const int num_workers = costs.size();
  std::vector<int> all_workers(num_workers);
  std::iota(all_workers.begin(), all_workers.end(), 0);

  const int num_tasks = costs[0].size();
  std::vector<int> all_tasks(num_tasks);
  std::iota(all_tasks.begin(), all_tasks.end(), 0);

  const std::vector<int64_t> team1 = {{0, 2, 4}};
  const std::vector<int64_t> team2 = {{1, 3, 5}};
  // Maximum total of tasks for any team
  const int team_max = 2;

  // Solver
  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  // Variables
  // x[i][j] is an array of 0-1 variables, which will be 1
  // if worker i is assigned to task j.
  std::vector<std::vector<const MPVariable*>> x(
      num_workers, std::vector<const MPVariable*>(num_tasks));
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      x[worker][task] =
          solver->MakeBoolVar(absl::StrFormat("x[%d,%d]", worker, task));
    }
  }

  // Constraints
  // Each worker is assigned to at most one task.
  for (int worker : all_workers) {
    LinearExpr worker_sum;
    for (int task : all_tasks) {
      worker_sum += x[worker][task];
    }
    solver->MakeRowConstraint(worker_sum <= 1.0);
  }
  // Each task is assigned to exactly one worker.
  for (int task : all_tasks) {
    LinearExpr task_sum;
    for (int worker : all_workers) {
      task_sum += x[worker][task];
    }
    solver->MakeRowConstraint(task_sum == 1.0);
  }

  // Each team takes at most two tasks.
  LinearExpr team1_tasks;
  for (int worker : team1) {
    for (int task : all_tasks) {
      team1_tasks += x[worker][task];
    }
  }
  solver->MakeRowConstraint(team1_tasks <= team_max);

  LinearExpr team2_tasks;
  for (int worker : team2) {
    for (int task : all_tasks) {
      team2_tasks += x[worker][task];
    }
  }
  solver->MakeRowConstraint(team2_tasks <= team_max);

  // Objective.
  MPObjective* const objective = solver->MutableObjective();
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      objective->SetCoefficient(x[worker][task], costs[worker][task]);
    }
  }
  objective->SetMinimization();

  // Solve
  const MPSolver::ResultStatus result_status = solver->Solve();

  // Print solution.
  // Check that the problem has a feasible solution.
  if (result_status != MPSolver::OPTIMAL &&
      result_status != MPSolver::FEASIBLE) {
    LOG(FATAL) << "No solution found.";
  }
  LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
  for (int worker : all_workers) {
    for (int task : all_tasks) {
      // Test if x[i][j] is 0 or 1 (with tolerance for floating point
      // arithmetic).
      if (x[worker][task]->solution_value() > 0.5) {
        LOG(INFO) << "Worker " << worker << " assigned to task " << task
                  << ".  Cost: " << costs[worker][task];
      }
    }
  }
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::AssignmentTeamsMip();
  return EXIT_SUCCESS;
}

জাভা

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
import java.util.stream.IntStream;

/** MIP example that solves an assignment problem. */
public class AssignmentTeamsMip {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Data
    double[][] costs = {
        {90, 76, 75, 70},
        {35, 85, 55, 65},
        {125, 95, 90, 105},
        {45, 110, 95, 115},
        {60, 105, 80, 75},
        {45, 65, 110, 95},
    };
    int numWorkers = costs.length;
    int numTasks = costs[0].length;

    final int[] allWorkers = IntStream.range(0, numWorkers).toArray();
    final int[] allTasks = IntStream.range(0, numTasks).toArray();

    final int[] team1 = {0, 2, 4};
    final int[] team2 = {1, 3, 5};
    // Maximum total of tasks for any team
    final int teamMax = 2;

    // Solver
    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    // Variables
    // x[i][j] is an array of 0-1 variables, which will be 1
    // if worker i is assigned to task j.
    MPVariable[][] x = new MPVariable[numWorkers][numTasks];
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        x[worker][task] = solver.makeBoolVar("x[" + worker + "," + task + "]");
      }
    }

    // Constraints
    // Each worker is assigned to at most one task.
    for (int worker : allWorkers) {
      MPConstraint constraint = solver.makeConstraint(0, 1, "");
      for (int task : allTasks) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }
    // Each task is assigned to exactly one worker.
    for (int task : allTasks) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int worker : allWorkers) {
        constraint.setCoefficient(x[worker][task], 1);
      }
    }

    // Each team takes at most two tasks.
    MPConstraint team1Tasks = solver.makeConstraint(0, teamMax, "");
    for (int worker : team1) {
      for (int task : allTasks) {
        team1Tasks.setCoefficient(x[worker][task], 1);
      }
    }

    MPConstraint team2Tasks = solver.makeConstraint(0, teamMax, "");
    for (int worker : team2) {
      for (int task : allTasks) {
        team2Tasks.setCoefficient(x[worker][task], 1);
      }
    }

    // Objective
    MPObjective objective = solver.objective();
    for (int worker : allWorkers) {
      for (int task : allTasks) {
        objective.setCoefficient(x[worker][task], costs[worker][task]);
      }
    }
    objective.setMinimization();

    // Solve
    MPSolver.ResultStatus resultStatus = solver.solve();

    // Print solution.
    // Check that the problem has a feasible solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL
        || resultStatus == MPSolver.ResultStatus.FEASIBLE) {
      System.out.println("Total cost: " + objective.value() + "\n");
      for (int worker : allWorkers) {
        for (int task : allTasks) {
          // Test if x[i][j] is 0 or 1 (with tolerance for floating point
          // arithmetic).
          if (x[worker][task].solutionValue() > 0.5) {
            System.out.println("Worker " + worker + " assigned to task " + task
                + ".  Cost: " + costs[worker][task]);
          }
        }
      }
    } else {
      System.err.println("No solution found.");
    }
  }

  private AssignmentTeamsMip() {}
}

সি#

using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.LinearSolver;

public class AssignmentTeamsMip
{
    static void Main()
    {
        // Data.
        int[,] costs = {
            { 90, 76, 75, 70 },   { 35, 85, 55, 65 },  { 125, 95, 90, 105 },
            { 45, 110, 95, 115 }, { 60, 105, 80, 75 }, { 45, 65, 110, 95 },
        };
        int numWorkers = costs.GetLength(0);
        int numTasks = costs.GetLength(1);

        int[] allWorkers = Enumerable.Range(0, numWorkers).ToArray();
        int[] allTasks = Enumerable.Range(0, numTasks).ToArray();

        int[] team1 = { 0, 2, 4 };
        int[] team2 = { 1, 3, 5 };
        // Maximum total of tasks for any team
        int teamMax = 2;

        // Solver.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        // Variables.
        // x[i, j] is an array of 0-1 variables, which will be 1
        // if worker i is assigned to task j.
        Variable[,] x = new Variable[numWorkers, numTasks];
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                x[worker, task] = solver.MakeBoolVar($"x[{worker},{task}]");
            }
        }

        // Constraints
        // Each worker is assigned to at most one task.
        foreach (int worker in allWorkers)
        {
            Constraint constraint = solver.MakeConstraint(0, 1, "");
            foreach (int task in allTasks)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }
        // Each task is assigned to exactly one worker.
        foreach (int task in allTasks)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            foreach (int worker in allWorkers)
            {
                constraint.SetCoefficient(x[worker, task], 1);
            }
        }

        // Each team takes at most two tasks.
        Constraint team1Tasks = solver.MakeConstraint(0, teamMax, "");
        foreach (int worker in team1)
        {
            foreach (int task in allTasks)
            {
                team1Tasks.SetCoefficient(x[worker, task], 1);
            }
        }

        Constraint team2Tasks = solver.MakeConstraint(0, teamMax, "");
        foreach (int worker in team2)
        {
            foreach (int task in allTasks)
            {
                team2Tasks.SetCoefficient(x[worker, task], 1);
            }
        }

        // Objective
        Objective objective = solver.Objective();
        foreach (int worker in allWorkers)
        {
            foreach (int task in allTasks)
            {
                objective.SetCoefficient(x[worker, task], costs[worker, task]);
            }
        }
        objective.SetMinimization();

        // Solve
        Solver.ResultStatus resultStatus = solver.Solve();

        // Print solution.
        // Check that the problem has a feasible solution.
        if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
        {
            Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
            foreach (int worker in allWorkers)
            {
                foreach (int task in allTasks)
                {
                    // Test if x[i, j] is 0 or 1 (with tolerance for floating point
                    // arithmetic).
                    if (x[worker, task].SolutionValue() > 0.5)
                    {
                        Console.WriteLine($"Worker {worker} assigned to task {task}. Cost: {costs[worker, task]}");
                    }
                }
            }
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}