لقد أوضحنا في القسم السابق كيفية إيجاد جميع الحلول لمشكلة في مشروع CP. بَعْدَهَا، سنوضح كيفية إيجاد الحل الأمثل. على سبيل المثال، سنحل المشكلة مشكلة التحسين التالية.
- تكبير 2x + 2y + 3z للقيود التالية:
-
x + 7⁄2 y + 3⁄2 z ≤ 25 3x - 5y + 7z ≤ 45 5x + 2y - 6z ≤ 37 x وy وz ≥ 0 الأعداد الصحيحة x وy وz
لزيادة السرعة الحسابية، تعمل أداة حل CP-SAT على الأعداد الصحيحة. هذا يعني أن جميع القيود والهدف يجب أن تحتوي على عدد صحيح المعاملات. في المثال أعلاه، القيد الأول لا يفي بهذا الشرط. لحل المشكلة، يجب عليك أولاً تحويل القيد من خلال ضربه في عدد صحيح كبير بما يكفي لتحويل جميع المعاملات إلى الأعداد الصحيحة. ويمكنك الاطّلاع على ذلك في قسم القيود أدناه.
الحلّ باستخدام أداة حلّ CP-SAT
تقدم الأقسام التالية برنامج بايثون يحل المسألة باستخدام أداة حل CP-SAT.
استيراد المكتبات
يستورد الرمز التالي المكتبة المطلوبة.
Python
from ortools.sat.python import cp_model
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
#C
using System; using System.Linq; using Google.OrTools.Sat;
تعريف النموذج
يوضح الرمز التالي نموذج المشكلة.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
#C
CpModel model = new CpModel();
إنشاء المتغيّرات
تُنشئ التعليمة البرمجية التالية متغيرات المشكلة.
Python
var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z")
C++
int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z");
#C
int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z");
تحديد القيود
منذ القيد الأول،
x + 7⁄2 y + 3⁄2 z | ≤ | 25 |
يتضمن معاملات بدون عدد صحيح، يجب أولاً ضرب القيد بالكامل في عدد صحيح كبير بما يكفي لتحويل المعاملات إلى أعداد صحيحة. في هذه الحالة ، فيمكنك الضرب في 2، وهو ما ينتج عنه القيد الجديد
2x + 7y + 3z | ≤ | 50 |
هذا لا يغير المشكلة، لأن القيد الأصلي له نفس الحلول مثل القيد المحوَّل.
تحدد التعليمة البرمجية التالية القيود الخطية الثلاثة للمشكلة:
Python
model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37)
C++
cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);
Java
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);
#C
model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37);
تحديد الدالة الموضوعية
تحدد التعليمة البرمجية التالية الدالة الموضوعية للمشكلة وتعلن يمثل مشكلة مضاعفة:
Python
model.maximize(2 * x + 2 * y + 3 * z)
C++
cp_model.Maximize(2 * x + 2 * y + 3 * z);
Java
model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));
#C
model.Maximize(2 * x + 2 * y + 3 * z);
طلب أداة حلّ المشكلة
تستدعي التعليمة البرمجية التالية أداة الحل.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
#C
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
عرض الحلّ
يعرض الرمز التالي النتائج.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
#C
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
يتم عرض الناتج أدناه:
Maximum of objective function: 35 x value: 7 y value: 3 z value: 5
البرنامج بأكمله
يمكنك الاطّلاع أدناه على البرنامج بالكامل.
Python
"""Simple solve.""" from ortools.sat.python import cp_model def main() -> None: """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z") # Creates the constraints. model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37) model.maximize(2 * x + 2 * y + 3 * z) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") if __name__ == "__main__": main()
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CpSatExample() { CpModelBuilder cp_model; int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37); cp_model.Maximize(2 * x + 2 * y + 3 * z); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::CpSatExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Minimal CP-SAT example to showcase calling the solver. */ public final class CpSatExample { public static void main(String[] args) { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z"); // Create the constraints. model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37); model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3})); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private CpSatExample() {} }
#C
using System; using System.Linq; using Google.OrTools.Sat; public class CpSatExample { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z"); // Creates the constraints. model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37); model.Maximize(2 * x + 2 * y + 3 * z); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }