The previous section showed how to find all solutions to a CP problem. Next, we'll show how to find an optimal solution. As an example, we'll solve the following optimization problem.
- Maximize 2x + 2y + 3z subject to the following constraints:
-
x + 7⁄2 y + 3⁄2 z ≤ 25 3x - 5y + 7z ≤ 45 5x + 2y - 6z ≤ 37 x, y, z ≥ 0 x, y, z integers
In order to increase computational speed, the CP-SAT solver works over the integers. This means all constraints and the objective must have integer coefficients. In the above example, the first constraint doesn't meet this condition. To solve the problem, you must first transform the constraint by multiplying it by a sufficiently large integer to convert all the coefficients to integers. This is shown in the Constraints section below.
Solution using the CP-SAT solver
The following sections present a Python program that solves the problem using the CP-SAT solver.
Import the libraries
The following code imports the required library.
Python
from ortools.sat.python import cp_model
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
C#
using System; using System.Linq; using Google.OrTools.Sat;
Declare the model
The following code declares the model for the problem.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
Create the variables
The following code creates the variables for the problem.
Python
var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z")
C++
int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z");
C#
int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z");
Define the constraints
Since the first constraint,
x + 7⁄2 y + 3⁄2 z | ≤ | 25 |
has non-integer coefficients, you must first multiply the entire constraint by a sufficiently large integer to convert the coefficients to integers. In this case , you can multiply by 2, which results in the new constraint
2x + 7y + 3z | ≤ | 50 |
This doesn't change the problem, since the original constraint has exactly the same solutions as the transformed constraint.
The following code defines the three linear constraints for the problem:
Python
model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37)
C++
cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);
Java
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);
C#
model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37);
Define the objective function
The following code defines the objective function for the problem and declares it to be a maximization problem:
Python
model.maximize(2 * x + 2 * y + 3 * z)
C++
cp_model.Maximize(2 * x + 2 * y + 3 * z);
Java
model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));
C#
model.Maximize(2 * x + 2 * y + 3 * z);
Call the solver
The following code calls the solver.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
Display the solution
The following code displays the results.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
The output is shown below:
Maximum of objective function: 35 x value: 7 y value: 3 z value: 5
The entire program
The entire program is shown below.
Python
"""Simple solve.""" from ortools.sat.python import cp_model def main() -> None: """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z") # Creates the constraints. model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37) model.maximize(2 * x + 2 * y + 3 * z) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") if __name__ == "__main__": main()
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CpSatExample() { CpModelBuilder cp_model; int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37); cp_model.Maximize(2 * x + 2 * y + 3 * z); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::CpSatExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Minimal CP-SAT example to showcase calling the solver. */ public final class CpSatExample { public static void main(String[] args) { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z"); // Create the constraints. model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37); model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3})); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private CpSatExample() {} }
C#
using System; using System.Linq; using Google.OrTools.Sat; public class CpSatExample { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z"); // Creates the constraints. model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37); model.Maximize(2 * x + 2 * y + 3 * z); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }