CP Sorunu Çözüm

Önceki bölümde bir CP sorununun tüm çözümlerinin nasıl bulunacağı gösteriliyordu. Sonra, optimum çözümün nasıl bulunacağını göstereceğiz. Örnek olarak, aşağıdaki optimizasyon sorunundan kaynaklanır.

2x + 2y + 3z'yi en üst düzeye çıkar şu kısıtlamalara tabidir:
x + 72 y + 32 z25
3x - 5y + 7z45
5x + 2y - 6z37
x, y, z0
x, y, z tam sayıları

CP-SAT çözücü, işlem hızını artırmak için tam sayılar. Bu, tüm kısıtlamaların ve hedefin tam sayı olması gerektiği anlamına gelir katsayıları. Yukarıdaki örnekte, ilk kısıtlama bu koşulu karşılamıyor koşul. Problemi çözmek için öncelikle kısıtı, tüm katsayıları dönüştürmek için yeterli büyüklükte bir tam sayıyla çarpılır tam sayılara dönüştürmenizi sağlar. Bu, aşağıdaki Kısıtlamalar bölümünde gösterilir.

CP-SAT çözücüyle çözüm

Aşağıdaki bölümlerde sorunu çözen bir Python programı sunulmaktadır: CP-SAT çözücüyü test etmektir.

Kitaplıkları içe aktarma

Aşağıdaki kod, gerekli kitaplığı içe aktarır.

Python

from ortools.sat.python import cp_model

C++

#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

Java

import static java.util.Arrays.stream;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

C#

using System;
using System.Linq;
using Google.OrTools.Sat;

Modeli açıklama

Aşağıdaki kod, sorun için modeli tanımlar.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Değişkenleri oluşturma

Aşağıdaki kod, sorun için değişkenleri oluşturur.

Python

var_upper_bound = max(50, 45, 37)
x = model.new_int_var(0, var_upper_bound, "x")
y = model.new_int_var(0, var_upper_bound, "y")
z = model.new_int_var(0, var_upper_bound, "z")

C++

int64_t var_upper_bound = std::max({50, 45, 37});
const Domain domain(0, var_upper_bound);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");

Java

int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();

IntVar x = model.newIntVar(0, varUpperBound, "x");
IntVar y = model.newIntVar(0, varUpperBound, "y");
IntVar z = model.newIntVar(0, varUpperBound, "z");

C#

int varUpperBound = new int[] { 50, 45, 37 }.Max();

IntVar x = model.NewIntVar(0, varUpperBound, "x");
IntVar y = model.NewIntVar(0, varUpperBound, "y");
IntVar z = model.NewIntVar(0, varUpperBound, "z");

Kısıtlamaları tanımlama

İlk kısıtlamadan bu yana

x + 72 y + 32 z25

katsayıları tam sayı değilse, önce kısıtın tamamını bir katsayıları tam sayıya dönüştürmek için yeterince büyük bir tam sayı. Bu durumda değerini 2 ile çarptığınızda yeni kısıtlama

2x + 7y + 3z50

Bu durum, sorunu değiştirmez çünkü orijinal sınırlamanın değeri tam olarak dönüştürülen kısıtla aynı çözümlere sahiptir.

Aşağıdaki kod, problem için üç doğrusal kısıtlamayı tanımlar:

Python

model.add(2 * x + 7 * y + 3 * z <= 50)
model.add(3 * x - 5 * y + 7 * z <= 45)
model.add(5 * x + 2 * y - 6 * z <= 37)

C++

cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50);
cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45);
cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);

Java

model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);

C#

model.Add(2 * x + 7 * y + 3 * z <= 50);
model.Add(3 * x - 5 * y + 7 * z <= 45);
model.Add(5 * x + 2 * y - 6 * z <= 37);

Hedef işlevini tanımlama

Aşağıdaki kod, problemin hedef işlevini tanımlar ve bir maksimizasyon problemi olarak görebiliriz:

Python

model.maximize(2 * x + 2 * y + 3 * z)

C++

cp_model.Maximize(2 * x + 2 * y + 3 * z);

Java

model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));

C#

model.Maximize(2 * x + 2 * y + 3 * z);

Çözücüyü çağırın

Aşağıdaki kod çözücüyü çağırır.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

Çözümü gösterin

Sonuçlar aşağıdaki kodda gösterilir.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Maximum of objective function: {solver.objective_value}\n")
    print(f"x = {solver.value(x)}")
    print(f"y = {solver.value(y)}")
    print(f"z = {solver.value(z)}")
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  // Get the value of x in the solution.
  LOG(INFO) << "Maximum of objective function: "
            << response.objective_value();
  LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
  LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
  LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
  System.out.println("x = " + solver.value(x));
  System.out.println("y = " + solver.value(y));
  System.out.println("z = " + solver.value(z));
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}");
    Console.WriteLine("x = " + solver.Value(x));
    Console.WriteLine("y = " + solver.Value(y));
    Console.WriteLine("z = " + solver.Value(z));
}
else
{
    Console.WriteLine("No solution found.");
}

Çıkış aşağıdaki gibidir:

Maximum of objective function: 35

x value:  7
y value:  3
z value:  5

Programın tamamı

Programın tamamı aşağıda gösterilmektedir.

Python

"""Simple solve."""
from ortools.sat.python import cp_model


def main() -> None:
    """Minimal CP-SAT example to showcase calling the solver."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    var_upper_bound = max(50, 45, 37)
    x = model.new_int_var(0, var_upper_bound, "x")
    y = model.new_int_var(0, var_upper_bound, "y")
    z = model.new_int_var(0, var_upper_bound, "z")

    # Creates the constraints.
    model.add(2 * x + 7 * y + 3 * z <= 50)
    model.add(3 * x - 5 * y + 7 * z <= 45)
    model.add(5 * x + 2 * y - 6 * z <= 37)

    model.maximize(2 * x + 2 * y + 3 * z)

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Maximum of objective function: {solver.objective_value}\n")
        print(f"x = {solver.value(x)}")
        print(f"y = {solver.value(y)}")
        print(f"z = {solver.value(z)}")
    else:
        print("No solution found.")

    # Statistics.
    print("\nStatistics")
    print(f"  status   : {solver.status_name(status)}")
    print(f"  conflicts: {solver.num_conflicts}")
    print(f"  branches : {solver.num_branches}")
    print(f"  wall time: {solver.wall_time} s")


if __name__ == "__main__":
    main()

C++

#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void CpSatExample() {
  CpModelBuilder cp_model;

  int64_t var_upper_bound = std::max({50, 45, 37});
  const Domain domain(0, var_upper_bound);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50);
  cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45);
  cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);

  cp_model.Maximize(2 * x + 2 * y + 3 * z);

  // Solving part.
  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    // Get the value of x in the solution.
    LOG(INFO) << "Maximum of objective function: "
              << response.objective_value();
    LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
    LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
    LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
  } else {
    LOG(INFO) << "No solution found.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::CpSatExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import static java.util.Arrays.stream;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

/** Minimal CP-SAT example to showcase calling the solver. */
public final class CpSatExample {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();

    IntVar x = model.newIntVar(0, varUpperBound, "x");
    IntVar y = model.newIntVar(0, varUpperBound, "y");
    IntVar z = model.newIntVar(0, varUpperBound, "z");

    // Create the constraints.
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);

    model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
      System.out.println("x = " + solver.value(x));
      System.out.println("y = " + solver.value(y));
      System.out.println("z = " + solver.value(z));
    } else {
      System.out.println("No solution found.");
    }

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private CpSatExample() {}
}

C#

using System;
using System.Linq;
using Google.OrTools.Sat;

public class CpSatExample
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int varUpperBound = new int[] { 50, 45, 37 }.Max();

        IntVar x = model.NewIntVar(0, varUpperBound, "x");
        IntVar y = model.NewIntVar(0, varUpperBound, "y");
        IntVar z = model.NewIntVar(0, varUpperBound, "z");

        // Creates the constraints.
        model.Add(2 * x + 7 * y + 3 * z <= 50);
        model.Add(3 * x - 5 * y + 7 * z <= 45);
        model.Add(5 * x + 2 * y - 6 * z <= 37);

        model.Maximize(2 * x + 2 * y + 3 * z);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}");
            Console.WriteLine("x = " + solver.Value(x));
            Console.WriteLine("y = " + solver.Value(y));
            Console.WriteLine("z = " + solver.Value(z));
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}