Önceki bölümde bir CP sorununun tüm çözümlerinin nasıl bulunacağı gösteriliyordu. Sonra, optimum çözümün nasıl bulunacağını göstereceğiz. Örnek olarak, aşağıdaki optimizasyon sorunundan kaynaklanır.
- 2x + 2y + 3z'yi en üst düzeye çıkar şu kısıtlamalara tabidir:
-
x + 7⁄2 y + 3⁄2 z ≤ 25 3x - 5y + 7z ≤ 45 5x + 2y - 6z ≤ 37 x, y, z ≥ 0 x, y, z tam sayıları
CP-SAT çözücü, işlem hızını artırmak için tam sayılar. Bu, tüm kısıtlamaların ve hedefin tam sayı olması gerektiği anlamına gelir katsayıları. Yukarıdaki örnekte, ilk kısıtlama bu koşulu karşılamıyor koşul. Problemi çözmek için öncelikle kısıtı, tüm katsayıları dönüştürmek için yeterli büyüklükte bir tam sayıyla çarpılır tam sayılara dönüştürmenizi sağlar. Bu, aşağıdaki Kısıtlamalar bölümünde gösterilir.
CP-SAT çözücüyle çözüm
Aşağıdaki bölümlerde sorunu çözen bir Python programı sunulmaktadır: CP-SAT çözücüyü test etmektir.
Kitaplıkları içe aktarma
Aşağıdaki kod, gerekli kitaplığı içe aktarır.
Python
from ortools.sat.python import cp_model
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
C#
using System; using System.Linq; using Google.OrTools.Sat;
Modeli açıklama
Aşağıdaki kod, sorun için modeli tanımlar.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
Değişkenleri oluşturma
Aşağıdaki kod, sorun için değişkenleri oluşturur.
Python
var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z")
C++
int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z");
C#
int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z");
Kısıtlamaları tanımlama
İlk kısıtlamadan bu yana
x + 7⁄2 y + 3⁄2 z | ≤ | 25 |
katsayıları tam sayı değilse, önce kısıtın tamamını bir katsayıları tam sayıya dönüştürmek için yeterince büyük bir tam sayı. Bu durumda değerini 2 ile çarptığınızda yeni kısıtlama
2x + 7y + 3z | ≤ | 50 |
Bu durum, sorunu değiştirmez çünkü orijinal sınırlamanın değeri tam olarak dönüştürülen kısıtla aynı çözümlere sahiptir.
Aşağıdaki kod, problem için üç doğrusal kısıtlamayı tanımlar:
Python
model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37)
C++
cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);
Java
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);
C#
model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37);
Hedef işlevini tanımlama
Aşağıdaki kod, problemin hedef işlevini tanımlar ve bir maksimizasyon problemi olarak görebiliriz:
Python
model.maximize(2 * x + 2 * y + 3 * z)
C++
cp_model.Maximize(2 * x + 2 * y + 3 * z);
Java
model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));
C#
model.Maximize(2 * x + 2 * y + 3 * z);
Çözücüyü çağırın
Aşağıdaki kod çözücüyü çağırır.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
Çözümü gösterin
Sonuçlar aşağıdaki kodda gösterilir.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
Çıkış aşağıdaki gibidir:
Maximum of objective function: 35 x value: 7 y value: 3 z value: 5
Programın tamamı
Programın tamamı aşağıda gösterilmektedir.
Python
"""Simple solve.""" from ortools.sat.python import cp_model def main() -> None: """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. var_upper_bound = max(50, 45, 37) x = model.new_int_var(0, var_upper_bound, "x") y = model.new_int_var(0, var_upper_bound, "y") z = model.new_int_var(0, var_upper_bound, "z") # Creates the constraints. model.add(2 * x + 7 * y + 3 * z <= 50) model.add(3 * x - 5 * y + 7 * z <= 45) model.add(5 * x + 2 * y - 6 * z <= 37) model.maximize(2 * x + 2 * y + 3 * z) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"Maximum of objective function: {solver.objective_value}\n") print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") if __name__ == "__main__": main()
C++
#include <stdint.h> #include <stdlib.h> #include <algorithm> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CpSatExample() { CpModelBuilder cp_model; int64_t var_upper_bound = std::max({50, 45, 37}); const Domain domain(0, var_upper_bound); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50); cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45); cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37); cp_model.Maximize(2 * x + 2 * y + 3 * z); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "Maximum of objective function: " << response.objective_value(); LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main() { operations_research::sat::CpSatExample(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import static java.util.Arrays.stream; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Minimal CP-SAT example to showcase calling the solver. */ public final class CpSatExample { public static void main(String[] args) { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt(); IntVar x = model.newIntVar(0, varUpperBound, "x"); IntVar y = model.newIntVar(0, varUpperBound, "y"); IntVar z = model.newIntVar(0, varUpperBound, "z"); // Create the constraints. model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45); model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37); model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3})); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue()); System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } // Statistics. System.out.println("Statistics"); System.out.printf(" conflicts: %d%n", solver.numConflicts()); System.out.printf(" branches : %d%n", solver.numBranches()); System.out.printf(" wall time: %f s%n", solver.wallTime()); } private CpSatExample() {} }
C#
using System; using System.Linq; using Google.OrTools.Sat; public class CpSatExample { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int varUpperBound = new int[] { 50, 45, 37 }.Max(); IntVar x = model.NewIntVar(0, varUpperBound, "x"); IntVar y = model.NewIntVar(0, varUpperBound, "y"); IntVar z = model.NewIntVar(0, varUpperBound, "z"); // Creates the constraints. model.Add(2 * x + 7 * y + 3 * z <= 50); model.Add(3 * x - 5 * y + 7 * z <= 45); model.Add(5 * x + 2 * y - 6 * z <= 37); model.Maximize(2 * x + 2 * y + 3 * z); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}"); Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } Console.WriteLine("Statistics"); Console.WriteLine($" conflicts: {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time: {solver.WallTime()}s"); } }