OR-Tools menawarkan dua alat utama untuk memecahkan masalah pemrograman bilangan bulat:
- MPSolver, yang dijelaskan di bagian sebelumnya.
- Pemecah masalah CP-SAT, yang akan kami jelaskan selanjutnya.
Untuk contoh yang memecahkan masalah pemrograman bilangan bulat menggunakan CP-SAT pemecah masalah dan MPSolver, lihat Menyelesaikan Masalah Tugas.
Bagian berikut menampilkan contoh yang menunjukkan cara menggunakan pemecah CP-SAT.
Contoh: menemukan solusi yang layak
Mari kita mulai dengan contoh masalah sederhana yang berisi:
- Tiga variabel, x, y, dan z, yang masing-masing dapat mengambil nilai: 0, 1, atau 2.
- Satu batasan:
x != y
Kita akan mulai dengan menunjukkan cara menggunakan pemecah masalah CP-SAT untuk menemukan satu dalam semua bahasa yang didukung. Sementara menemukan solusi yang layak adalah sepele dalam kasus ini, dalam masalah pemrograman batasan yang lebih kompleks hal itu dapat sangat sulit untuk menentukan apakah ada solusi yang layak.
Untuk contoh menemukan solusi optimal untuk masalah CP, lihat Menyelesaikan Masalah Pengoptimalan.
Mengimpor library
Kode berikut akan mengimpor library yang diperlukan.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar;
C#
using System; using Google.OrTools.Sat;
Mendeklarasikan model
Kode berikut mendeklarasikan model CP-SAT.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
Membuat variabel
Kode berikut membuat variabel untuk masalah tersebut.
Python
num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z")
C++
const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z");
C#
int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z");
Pemecah masalah membuat tiga variabel, x, y, dan z, yang masing-masing dapat mengambil nilai 0, 1, atau 2.
Membuat batasan
Kode berikut membuat batasan x != y
.
Python
model.add(x != y)
C++
cp_model.AddNotEqual(x, y);
Java
model.addDifferent(x, y);
C#
model.Add(x != y);
Memanggil pemecah masalah
Kode berikut memanggil pemecah.
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
Nilai return CP-SAT
Pemecah masalah CP-SAT menampilkan salah satu nilai status yang ditunjukkan pada tabel di bawah. Di beberapa
contoh ini, nilai yang ditampilkan adalah OPTIMAL
.
Status | Deskripsi |
---|---|
OPTIMAL |
Solusi optimal yang layak telah ditemukan. |
FEASIBLE |
Solusi yang layak ditemukan, tetapi kami tidak tahu apakah solusi itu optimal. |
INFEASIBLE |
Masalah tersebut terbukti tidak layak. |
MODEL_INVALID |
CpModelProto yang diberikan tidak lulus langkah validasi. Anda bisa mendapatkan
error mendetail dengan memanggil ValidateCpModel(model_proto) . |
UNKNOWN |
Status model tidak diketahui karena tidak ada solusi yang ditemukan (atau status masalah tidak terbukti TIDAK FISIK) sebelum sesuatu menyebabkan pemecah masalah perhentian, seperti batas waktu, batas memori, atau batas khusus yang ditetapkan oleh pengguna. |
Hal tersebut didefinisikan dalam cp_model.proto.
Tampilkan solusi pertama
Kode berikut menampilkan solusi layak pertama yang ditemukan oleh pemecah masalah.
Perhatikan bahwa kode akan memeriksa apakah nilai status
adalah FEASIBLE
atau
OPTIMAL
.
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
Menjalankan program
Program lengkap akan ditampilkan di bagian berikutnya. Saat Anda menjalankan program, program akan menampilkan solusi pertama yang ditemukan oleh pemecah masalah:
x = 1 y = 0 z = 0
Selesaikan program
Program lengkapnya ditampilkan di bawah ini.
Python
"""Simple solve.""" from ortools.sat.python import cp_model def simple_sat_program(): """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z") # Creates the constraints. model.add(x != y) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") simple_sat_program()
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void SimpleSatProgram() { CpModelBuilder cp_model; const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddNotEqual(x, y); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } } } // namespace sat } // namespace operations_research int main() { operations_research::sat::SimpleSatProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; /** Minimal CP-SAT example to showcase calling the solver. */ public final class SimpleSatProgram { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z"); // Create the constraints. model.addDifferent(x, y); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } } private SimpleSatProgram() {} }
C#
using System; using Google.OrTools.Sat; public class SimpleSatProgram { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z"); // Creates the constraints. model.Add(x != y); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } } }
Menemukan semua solusi
Selanjutnya, kita akan menunjukkan cara memodifikasi program di atas untuk menemukan semua solusi yang layak.
Penambahan utama ke program ini adalah callback printer solusi yang Anda diteruskan ke pemecah masalah, yang menampilkan setiap solusi saat ditemukan.
Menambahkan printer solusi
Kode berikut membuat printer solusi.
Python
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << " x = " << SolutionIntegerValue(r, x); LOG(INFO) << " y = " << SolutionIntegerValue(r, y); LOG(INFO) << " z = " << SolutionIntegerValue(r, z); num_solutions++; }));
Java
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime()); for (IntVar v : variableArray) { System.out.printf(" %s = %d%n", v.getName(), value(v)); } solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
C#
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime())); foreach (IntVar v in variables_) { Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v))); } solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
Memanggil pemecah masalah
Kode berikut memanggil pemecah masalah, dan meneruskan printer solusi ke pemecah masalah tersebut.
Python
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter([x, y, z]) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
Java
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z}); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
C#
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z }); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
Menjalankan program
Program lengkap ditampilkan di bagian berikutnya. Saat Anda menjalankan program, program akan menampilkan ke-18 solusi yang layak:
x=1 y=0 z=0 x=2 y=0 z=0 x=2 y=1 z=0 x=2 y=1 z=1 x=2 y=1 z=2 x=2 y=0 z=2 x=2 y=0 z=1 x=1 y=0 z=1 x=0 y=1 z=1 x=0 y=1 z=2 x=0 y=2 z=2 x=1 y=2 z=2 x=1 y=2 z=1 x=1 y=2 z=0 x=0 y=2 z=0 x=0 y=1 z=0 x=0 y=2 z=1 x=1 y=0 z=2 Status = FEASIBLE
Selesaikan program
Program lengkapnya ditampilkan di bawah ini.
Python
from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def search_for_all_solutions_sample_sat(): """Showcases calling the solver to search for all solutions.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z") # Create the constraints. model.add(x != y) # Create a solver and solve. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter([x, y, z]) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) print(f"Status = {solver.status_name(status)}") print(f"Number of solutions found: {solution_printer.solution_count}") search_for_all_solutions_sample_sat()
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void SearchAllSolutionsSampleSat() { CpModelBuilder cp_model; const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddNotEqual(x, y); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << " x = " << SolutionIntegerValue(r, x); LOG(INFO) << " y = " << SolutionIntegerValue(r, y); LOG(INFO) << " z = " << SolutionIntegerValue(r, z); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace sat } // namespace operations_research int main() { operations_research::sat::SearchAllSolutionsSampleSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; /** Code sample that solves a model and displays all solutions. */ public class SearchForAllSolutionsSampleSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime()); for (IntVar v : variableArray) { System.out.printf(" %s = %d%n", v.getName(), value(v)); } solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z"); // Create the constraints. model.addDifferent(x, y); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z}); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); System.out.println(cb.getSolutionCount() + " solutions found."); } }
C#
using System; using Google.OrTools.Sat; public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime())); foreach (IntVar v in variables_) { Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v))); } solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } public class SearchForAllSolutionsSampleSat { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z"); // Adds a different constraint. model.Add(x != y); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z }); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine($"Number of solutions found: {cb.SolutionCount()}"); } }