OR-Tools には、整数プログラミングの問題を解くための主要なツールが 2 つあります。
- MPSolver: 前のセクションで説明したとおりです。
- 次に説明する CP-SAT ソルバー。
CP-SAT の両方を使用して整数プログラミングの問題を解決する例は、 使用方法については、以下をご覧ください。 Solving an Assignment Problem」をご覧ください。
次のセクションでは、CP-SAT ソルバーの使用方法を示す例を紹介します。
例: 実現可能な解決策を見つける
簡単な問題の例を見てみましょう。
- x、y、z の 3 つの変数。それぞれ、0、1、2 という値を取ることができます。
- 1 つの制約:
x != y
まず、CP-SAT ソルバーを使用して、実行可能な単一の すべての言語に対応しています実現可能な解決策を見つけることは このケースでは簡単ですが、より複雑な制約プログラミングの問題では、 実現可能なソリューションがあるかどうかを判断するのは非常に困難です。
CP の問題に対する最適なソリューションを見つける例については、以下をご覧ください。 Solving an Optimization Problem(最適化の問題を解決する)
ライブラリのインポート
次のコードは、必要なライブラリをインポートします。
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar;
C#
using System; using Google.OrTools.Sat;
モデルを宣言する
次のコードは CP-SAT モデルを宣言しています。
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel();
変数を作成する
次のコードは、問題を表す変数を作成します。
Python
num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z")
C++
const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z");
Java
int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z");
C#
int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z");
ソルバーは x、y、z という 3 つの変数を生成し、 0、1、2 のいずれかになります。
制約を作成する
次のコードは、制約 x != y
を作成します。
Python
model.add(x != y)
C++
cp_model.AddNotEqual(x, y);
Java
model.addDifferent(x, y);
C#
model.Add(x != y);
解法を呼び出す
次のコードはソルバーを呼び出します。
Python
solver = cp_model.CpSolver() status = solver.solve(model)
C++
const CpSolverResponse response = Solve(cp_model.Build());
Java
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model);
C#
CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model);
CP-SAT の戻り値
CP-SAT ソルバーは、以下の表に示すステータス値のいずれかを返します。イン
この例では、OPTIMAL
が返されます。
ステータス | 説明 |
---|---|
OPTIMAL |
実現可能な最適解が見つかりました。 |
FEASIBLE |
実現可能な解決策は見つかったものの、最適かどうかはわかりません。 |
INFEASIBLE |
この問題は実現不可能であることが証明されました。 |
MODEL_INVALID |
指定された CpModelProto が検証ステップに合格しませんでした。こちらの
ValidateCpModel(model_proto) を呼び出すことで、詳細なエラーを確認できます。 |
UNKNOWN |
解決策が見つからなかったため、モデルのステータスが不明です(または 不可能であることが証明されていなかった)によって、なんらかの理由で解法が 制限時間などの停止 メモリ上限、ユーザーが設定したカスタム上限などです。 |
これらは cp_model.proto.
1 つ目の解答を表示する
次のコードは、ソルバーで最初に見つかった実行可能な解を示しています。
このコードは、status
の値が FEASIBLE
または
OPTIMAL
。
Python
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.")
C++
if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; }
Java
if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); }
C#
if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); }
プログラムを実行する
完全なプログラムについては、次のセクションをご覧ください。 プログラムを実行すると、解法によって最初に見つかった解が返されます。
x = 1 y = 0 z = 0
プログラムを完了する
完全なプログラムを以下に示します。
Python
"""Simple solve.""" from ortools.sat.python import cp_model def simple_sat_program(): """Minimal CP-SAT example to showcase calling the solver.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z") # Creates the constraints. model.add(x != y) # Creates a solver and solves the model. solver = cp_model.CpSolver() status = solver.solve(model) if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE: print(f"x = {solver.value(x)}") print(f"y = {solver.value(y)}") print(f"z = {solver.value(z)}") else: print("No solution found.") simple_sat_program()
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void SimpleSatProgram() { CpModelBuilder cp_model; const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddNotEqual(x, y); // Solving part. const CpSolverResponse response = Solve(cp_model.Build()); if (response.status() == CpSolverStatus::OPTIMAL || response.status() == CpSolverStatus::FEASIBLE) { // Get the value of x in the solution. LOG(INFO) << "x = " << SolutionIntegerValue(response, x); LOG(INFO) << "y = " << SolutionIntegerValue(response, y); LOG(INFO) << "z = " << SolutionIntegerValue(response, z); } else { LOG(INFO) << "No solution found."; } } } // namespace sat } // namespace operations_research int main() { operations_research::sat::SimpleSatProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverStatus; import com.google.ortools.sat.IntVar; /** Minimal CP-SAT example to showcase calling the solver. */ public final class SimpleSatProgram { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z"); // Create the constraints. model.addDifferent(x, y); // Create a solver and solve the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.solve(model); if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) { System.out.println("x = " + solver.value(x)); System.out.println("y = " + solver.value(y)); System.out.println("z = " + solver.value(z)); } else { System.out.println("No solution found."); } } private SimpleSatProgram() {} }
C#
using System; using Google.OrTools.Sat; public class SimpleSatProgram { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z"); // Creates the constraints. model.Add(x != y); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); CpSolverStatus status = solver.Solve(model); if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible) { Console.WriteLine("x = " + solver.Value(x)); Console.WriteLine("y = " + solver.Value(y)); Console.WriteLine("z = " + solver.Value(z)); } else { Console.WriteLine("No solution found."); } } }
すべてのソリューションを見つける
次に、上記のプログラムを変更して、 解決策を見ていきます。
プログラムへの主な追加は、ソリューション プリンタです。これは、 ソルバーに渡され、見つかった各解が表示されます。
ソリューション プリンタを追加
次のコードは、ソリューション プリンタを作成します。
Python
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << " x = " << SolutionIntegerValue(r, x); LOG(INFO) << " y = " << SolutionIntegerValue(r, y); LOG(INFO) << " z = " << SolutionIntegerValue(r, z); num_solutions++; }));
Java
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime()); for (IntVar v : variableArray) { System.out.printf(" %s = %d%n", v.getName(), value(v)); } solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
C#
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime())); foreach (IntVar v in variables_) { Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v))); } solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
解法を呼び出す
次のコードは、ソルバーを呼び出して解答プリンタを渡します。
Python
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter([x, y, z]) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
Java
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z}); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
C#
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z }); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
プログラムを実行する
プログラム全体については、次のセクションで説明します。 プログラムを実行すると、18 個の実行可能な解がすべて表示されます。
x=1 y=0 z=0 x=2 y=0 z=0 x=2 y=1 z=0 x=2 y=1 z=1 x=2 y=1 z=2 x=2 y=0 z=2 x=2 y=0 z=1 x=1 y=0 z=1 x=0 y=1 z=1 x=0 y=1 z=2 x=0 y=2 z=2 x=1 y=2 z=2 x=1 y=2 z=1 x=1 y=2 z=0 x=0 y=2 z=0 x=0 y=1 z=0 x=0 y=2 z=1 x=1 y=0 z=2 Status = FEASIBLE
プログラムを完了する
完全なプログラムを以下に示します。
Python
from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def search_for_all_solutions_sample_sat(): """Showcases calling the solver to search for all solutions.""" # Creates the model. model = cp_model.CpModel() # Creates the variables. num_vals = 3 x = model.new_int_var(0, num_vals - 1, "x") y = model.new_int_var(0, num_vals - 1, "y") z = model.new_int_var(0, num_vals - 1, "z") # Create the constraints. model.add(x != y) # Create a solver and solve. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter([x, y, z]) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) print(f"Status = {solver.status_name(status)}") print(f"Number of solutions found: {solution_printer.solution_count}") search_for_all_solutions_sample_sat()
C++
#include <stdlib.h> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void SearchAllSolutionsSampleSat() { CpModelBuilder cp_model; const Domain domain(0, 2); const IntVar x = cp_model.NewIntVar(domain).WithName("x"); const IntVar y = cp_model.NewIntVar(domain).WithName("y"); const IntVar z = cp_model.NewIntVar(domain).WithName("z"); cp_model.AddNotEqual(x, y); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << " x = " << SolutionIntegerValue(r, x); LOG(INFO) << " y = " << SolutionIntegerValue(r, y); LOG(INFO) << " z = " << SolutionIntegerValue(r, z); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace sat } // namespace operations_research int main() { operations_research::sat::SearchAllSolutionsSampleSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; /** Code sample that solves a model and displays all solutions. */ public class SearchForAllSolutionsSampleSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime()); for (IntVar v : variableArray) { System.out.printf(" %s = %d%n", v.getName(), value(v)); } solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); // Create the variables. int numVals = 3; IntVar x = model.newIntVar(0, numVals - 1, "x"); IntVar y = model.newIntVar(0, numVals - 1, "y"); IntVar z = model.newIntVar(0, numVals - 1, "z"); // Create the constraints. model.addDifferent(x, y); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z}); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); System.out.println(cb.getSolutionCount() + " solutions found."); } }
C#
using System; using Google.OrTools.Sat; public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime())); foreach (IntVar v in variables_) { Console.WriteLine(String.Format(" {0} = {1}", v.ToString(), Value(v))); } solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } public class SearchForAllSolutionsSampleSat { static void Main() { // Creates the model. CpModel model = new CpModel(); // Creates the variables. int num_vals = 3; IntVar x = model.NewIntVar(0, num_vals - 1, "x"); IntVar y = model.NewIntVar(0, num_vals - 1, "y"); IntVar z = model.NewIntVar(0, num_vals - 1, "z"); // Adds a different constraint. model.Add(x != y); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z }); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine($"Number of solutions found: {cb.SolutionCount()}"); } }