Rozwiązanie CP-SAT

W przypadku narzędzi LUB dostępne są 2 główne narzędzia do rozwiązywania problemów z programowaniem liczb całkowitych:

  • MPSolver, jak opisano w poprzedniej sekcji.
  • Rozwiązanie CP-SAT, które omówimy dalej.

Oto przykład rozwiązania zadania programowania liczb całkowitych przy użyciu zarówno argumentu CP-SAT, i opakowanie MPSolver, zobacz Rozwiązywanie problemów z cesją.

W kolejnych sekcjach znajdziesz przykłady używania rozwiązania CP-SAT.

Przykład: znalezienie odpowiedniego rozwiązania

Zacznijmy od prostego przykładowego problemu, który obejmuje:

  • Trzy zmienne, x, y i z, z których każda może przyjmować wartości: 0, 1 lub 2.
  • 1 ograniczenie: x != y

Zaczniemy od przedstawienia, jak używać rozwiązania CP-SAT do znalezienia we wszystkich obsługiwanych językach. Znalezienie realnego rozwiązania w tym przypadku jest to banalne, w bardziej złożonych problemach z programowaniem ograniczeń jest bardzo trudne.

Przykład znajdowania optymalnego rozwiązania problemu dotyczącego przeszkody można znaleźć w sekcji Rozwiązywanie problemów z optymalizacją.

Zaimportuj biblioteki

Poniższy kod importuje wymaganą bibliotekę.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;

C#

using System;
using Google.OrTools.Sat;

Deklarowanie modelu

Poniższy kod deklaruje model CP-SAT.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Tworzenie zmiennych

Poniższy kod tworzy zmienne związane z tym problemem.

Python

num_vals = 3
x = model.new_int_var(0, num_vals - 1, "x")
y = model.new_int_var(0, num_vals - 1, "y")
z = model.new_int_var(0, num_vals - 1, "z")

C++

const Domain domain(0, 2);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");

Java

int numVals = 3;

IntVar x = model.newIntVar(0, numVals - 1, "x");
IntVar y = model.newIntVar(0, numVals - 1, "y");
IntVar z = model.newIntVar(0, numVals - 1, "z");

C#

int num_vals = 3;

IntVar x = model.NewIntVar(0, num_vals - 1, "x");
IntVar y = model.NewIntVar(0, num_vals - 1, "y");
IntVar z = model.NewIntVar(0, num_vals - 1, "z");

Rozwiązanie to tworzy trzy zmienne: x, y i z, z których każda może przyjąć wartości 0, 1 lub 2.

Tworzenie ograniczenia

Ten kod tworzy ograniczenie x != y.

Python

model.add(x != y)

C++

cp_model.AddNotEqual(x, y);

Java

model.addDifferent(x, y);

C#

model.Add(x != y);

Zadzwoń do rozwiązania

Następujący kod wywołuje rozwiązanie.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

Zwracane wartości CP-SAT

Rozwiązanie CP-SAT zwraca jedną z wartości stanu pokazanych w tabeli poniżej. W w tym przykładzie zwracana wartość to OPTIMAL.

Stan Opis
OPTIMAL Znaleziono optymalne wykonalne rozwiązanie.
FEASIBLE Znaleźliśmy sensowne rozwiązanie, ale nie wiemy, czy jest optymalne.
INFEASIBLE Okazało się, że problem jest niemożliwy.
MODEL_INVALID Podany CpModelProto nie przeszedł etapu weryfikacji. Możesz uzyskać szczegółowy błąd, dzwoniąc pod numer ValidateCpModel(model_proto).
UNKNOWN Stan modelu jest nieznany, ponieważ nie znaleziono rozwiązania (lub nie został uznany za NIEPRAWIDŁOWY), zanim coś sprawiło, że rozwiązanie np. limit czasu, limit pamięci lub limit niestandardowy ustawiony przez użytkownika.

Definiujesz je tutaj: cp_model.proto.

Wyświetl pierwsze rozwiązanie

Poniższy kod wyświetla pierwsze możliwe rozwiązanie znalezione przez niego. Pamiętaj, że kod sprawdza, czy wartość status wynosi FEASIBLE lub OPTIMAL

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"x = {solver.value(x)}")
    print(f"y = {solver.value(y)}")
    print(f"z = {solver.value(z)}")
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  // Get the value of x in the solution.
  LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
  LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
  LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("x = " + solver.value(x));
  System.out.println("y = " + solver.value(y));
  System.out.println("z = " + solver.value(z));
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine("x = " + solver.Value(x));
    Console.WriteLine("y = " + solver.Value(y));
    Console.WriteLine("z = " + solver.Value(z));
}
else
{
    Console.WriteLine("No solution found.");
}

Uruchamianie programu

Pełne programy są widoczne w następnej sekcji. Po uruchomieniu programu zwraca on pierwsze rozwiązanie znalezione przez to rozwiązanie:

x = 1
y = 0
z = 0

Kompletne programy

Pełna lista programów znajduje się poniżej.

Python

"""Simple solve."""
from ortools.sat.python import cp_model


def simple_sat_program():
    """Minimal CP-SAT example to showcase calling the solver."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    num_vals = 3
    x = model.new_int_var(0, num_vals - 1, "x")
    y = model.new_int_var(0, num_vals - 1, "y")
    z = model.new_int_var(0, num_vals - 1, "z")

    # Creates the constraints.
    model.add(x != y)

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"x = {solver.value(x)}")
        print(f"y = {solver.value(y)}")
        print(f"z = {solver.value(z)}")
    else:
        print("No solution found.")


simple_sat_program()

C++

#include <stdlib.h>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void SimpleSatProgram() {
  CpModelBuilder cp_model;

  const Domain domain(0, 2);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddNotEqual(x, y);

  // Solving part.
  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    // Get the value of x in the solution.
    LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
    LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
    LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
  } else {
    LOG(INFO) << "No solution found.";
  }
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::SimpleSatProgram();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;

/** Minimal CP-SAT example to showcase calling the solver. */
public final class SimpleSatProgram {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int numVals = 3;

    IntVar x = model.newIntVar(0, numVals - 1, "x");
    IntVar y = model.newIntVar(0, numVals - 1, "y");
    IntVar z = model.newIntVar(0, numVals - 1, "z");

    // Create the constraints.
    model.addDifferent(x, y);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("x = " + solver.value(x));
      System.out.println("y = " + solver.value(y));
      System.out.println("z = " + solver.value(z));
    } else {
      System.out.println("No solution found.");
    }
  }

  private SimpleSatProgram() {}
}

C#

using System;
using Google.OrTools.Sat;

public class SimpleSatProgram
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int num_vals = 3;

        IntVar x = model.NewIntVar(0, num_vals - 1, "x");
        IntVar y = model.NewIntVar(0, num_vals - 1, "y");
        IntVar z = model.NewIntVar(0, num_vals - 1, "z");

        // Creates the constraints.
        model.Add(x != y);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine("x = " + solver.Value(x));
            Console.WriteLine("y = " + solver.Value(y));
            Console.WriteLine("z = " + solver.Value(z));
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}

Znajdowanie wszystkich rozwiązań

Następnie pokażemy, jak zmodyfikować program powyżej, aby znaleźć wszystkie możliwe rozwiązania.

Głównym dodatkiem do programu jest drukarka rozwiązań, dzięki której oddzwaniamy do Ciebie. do narzędzia, które wyświetla każde znalezione rozwiązanie.

Dodaj drukarkę rozwiązania

Ten kod tworzy drukarkę rozwiązania.

Python

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count

C++

Model model;

int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
  LOG(INFO) << "Solution " << num_solutions;
  LOG(INFO) << "  x = " << SolutionIntegerValue(r, x);
  LOG(INFO) << "  y = " << SolutionIntegerValue(r, y);
  LOG(INFO) << "  z = " << SolutionIntegerValue(r, z);
  num_solutions++;
}));

Java

static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
  public VarArraySolutionPrinter(IntVar[] variables) {
    variableArray = variables;
  }

  @Override
  public void onSolutionCallback() {
    System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime());
    for (IntVar v : variableArray) {
      System.out.printf("  %s = %d%n", v.getName(), value(v));
    }
    solutionCount++;
  }

  public int getSolutionCount() {
    return solutionCount;
  }

  private int solutionCount;
  private final IntVar[] variableArray;
}

C#

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime()));
            foreach (IntVar v in variables_)
            {
                Console.WriteLine(String.Format("  {0} = {1}", v.ToString(), Value(v)));
            }
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

Zadzwoń do rozwiązania

Następujący kod wywołuje narzędzie i przekazuje do niego drukarkę rozwiązania.

Python

solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter([x, y, z])
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Solve.
status = solver.solve(model, solution_printer)

C++

SatParameters parameters;
parameters.set_enumerate_all_solutions(true);
model.Add(NewSatParameters(parameters));
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

Java

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z});
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// And solve.
solver.solve(model, cb);

C#

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z });
// Search for all solutions.
solver.StringParameters = "enumerate_all_solutions:true";
// And solve.
solver.Solve(model, cb);

Uruchamianie programu

Pełny program znajdziesz w następnej sekcji. Po uruchomieniu programu zobaczysz wszystkie 18 możliwych rozwiązań:

x=1 y=0 z=0
x=2 y=0 z=0
x=2 y=1 z=0
x=2 y=1 z=1
x=2 y=1 z=2
x=2 y=0 z=2
x=2 y=0 z=1
x=1 y=0 z=1
x=0 y=1 z=1
x=0 y=1 z=2
x=0 y=2 z=2
x=1 y=2 z=2
x=1 y=2 z=1
x=1 y=2 z=0
x=0 y=2 z=0
x=0 y=1 z=0
x=0 y=2 z=1
x=1 y=0 z=2
Status = FEASIBLE

Kompletne programy

Pełna lista programów znajduje się poniżej.

Python

from ortools.sat.python import cp_model


class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count


def search_for_all_solutions_sample_sat():
    """Showcases calling the solver to search for all solutions."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    num_vals = 3
    x = model.new_int_var(0, num_vals - 1, "x")
    y = model.new_int_var(0, num_vals - 1, "y")
    z = model.new_int_var(0, num_vals - 1, "z")

    # Create the constraints.
    model.add(x != y)

    # Create a solver and solve.
    solver = cp_model.CpSolver()
    solution_printer = VarArraySolutionPrinter([x, y, z])
    # Enumerate all solutions.
    solver.parameters.enumerate_all_solutions = True
    # Solve.
    status = solver.solve(model, solution_printer)

    print(f"Status = {solver.status_name(status)}")
    print(f"Number of solutions found: {solution_printer.solution_count}")


search_for_all_solutions_sample_sat()

C++

#include <stdlib.h>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void SearchAllSolutionsSampleSat() {
  CpModelBuilder cp_model;

  const Domain domain(0, 2);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddNotEqual(x, y);

  Model model;

  int num_solutions = 0;
  model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
    LOG(INFO) << "Solution " << num_solutions;
    LOG(INFO) << "  x = " << SolutionIntegerValue(r, x);
    LOG(INFO) << "  y = " << SolutionIntegerValue(r, y);
    LOG(INFO) << "  z = " << SolutionIntegerValue(r, z);
    num_solutions++;
  }));

  // Tell the solver to enumerate all solutions.
  SatParameters parameters;
  parameters.set_enumerate_all_solutions(true);
  model.Add(NewSatParameters(parameters));
  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

  LOG(INFO) << "Number of solutions found: " << num_solutions;
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::SearchAllSolutionsSampleSat();

  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;

/** Code sample that solves a model and displays all solutions. */
public class SearchForAllSolutionsSampleSat {
  static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
    public VarArraySolutionPrinter(IntVar[] variables) {
      variableArray = variables;
    }

    @Override
    public void onSolutionCallback() {
      System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime());
      for (IntVar v : variableArray) {
        System.out.printf("  %s = %d%n", v.getName(), value(v));
      }
      solutionCount++;
    }

    public int getSolutionCount() {
      return solutionCount;
    }

    private int solutionCount;
    private final IntVar[] variableArray;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int numVals = 3;

    IntVar x = model.newIntVar(0, numVals - 1, "x");
    IntVar y = model.newIntVar(0, numVals - 1, "y");
    IntVar z = model.newIntVar(0, numVals - 1, "z");

    // Create the constraints.
    model.addDifferent(x, y);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z});
    // Tell the solver to enumerate all solutions.
    solver.getParameters().setEnumerateAllSolutions(true);
    // And solve.
    solver.solve(model, cb);

    System.out.println(cb.getSolutionCount() + " solutions found.");
  }
}

C#

using System;
using Google.OrTools.Sat;

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime()));
            foreach (IntVar v in variables_)
            {
                Console.WriteLine(String.Format("  {0} = {1}", v.ToString(), Value(v)));
            }
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

public class SearchForAllSolutionsSampleSat
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int num_vals = 3;

        IntVar x = model.NewIntVar(0, num_vals - 1, "x");
        IntVar y = model.NewIntVar(0, num_vals - 1, "y");
        IntVar z = model.NewIntVar(0, num_vals - 1, "z");

        // Adds a different constraint.
        model.Add(x != y);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z });
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine($"Number of solutions found: {cb.SolutionCount()}");
    }
}