الألغاز التشفيرية هي تمرين رياضي تجتمع فيه أرقام بعض يتم تمثيل الأرقام بأحرف (أو رموز). يمثل كل حرف قيمة فريدة رقم. والهدف من ذلك هو إيجاد الأرقام التي تكون بها معادلة رياضية معينة تم التحقق منه:
CP + IS + FUN -------- = TRUE
يؤدي تعيين أحرف واحد إلى أرقام إلى الحصول على المعادلة التالية:
23 + 74 + 968 -------- = 1065
هناك إجابات أخرى حول هذه المشكلة. سنوضح كيفية إيجاد جميع الحلول.
نمذجة المشكلة
وكما هو الحال مع أي مشكلة متعلقة بالتحسين، سنبدأ بتحديد المتغيرات القيود. المتغيرات هي الأحرف، التي يمكن أن تتخذ أي رقم واحد
بالنسبة لـ CP + IS + FUN = TRUE، تكون القيود كما يلي:
- المعادلة:
CP + IS + FUN = TRUE
. - يجب أن يكون كل حرف من الأحرف العشرة رقمًا مختلفًا.
- لا يمكن أن تكون قيم
C
وI
وF
وT
صفرًا (لأننا لا نكتب الأصفار البادئة في الأرقام).
يمكنك حل المسائل الحسابية باستخدام أداة حلّ CP-SAT الجديدة، أكثر كفاءة، أو أداة حل CP الأصلية. سنعرض لك أمثلة باستخدام كل من أدوات الحلّ، بدءًا من CP-SAT.
حلول CP-SAT
سنعرض المتغيرات والقيود واستدعاء أداة الحلّ، وأخيرًا البرامج الكاملة.
استيراد المكتبات
يستورد الرمز التالي المكتبة المطلوبة.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
#C
using System; using Google.OrTools.Sat;
تعريف النموذج
يوضح الرمز التالي نموذج المشكلة.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
#C
CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
تعريف المتغيرات
وعند استخدام أداة حل CP-SAT، هناك بعض الطرق المساعدة التي من المفيد
التعريف.
سنستخدم أحد هذه الأرقام، وهو NewIntVar
، للإشارة إلى الأرقام (الصحيحة).
نحن نميّز بين الأحرف التي يُحتمل أن تكون صفرًا وتلك التي
لا يمكن إرسالها (C
وI
وF
وT
).
Python
base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E");
Java
int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};
#C
int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };
تحديد القيود
بعد ذلك، القيود. أولاً، نتأكد من أن جميع الأحرف لها قيم مختلفة،
باستخدام طريقة AddAllDifferent
المساعدة. بعد ذلك، نستخدم مساعد AddEquality
لإنشاء قيود تفرض المساواة في CP + IS + FUN = TRUE
.
Python
model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e )
C++
// Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);
Java
model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0);
#C
// Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);
طابعة الحلول
الرمز البرمجي لطابعة الحلول، والذي يعرض كل حل على أنّه أداة الحلّ يعثر عليه، كما هو موضح أدناه.
Python
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; }));
Java
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
#C
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
جارٍ استدعاء أداة الحلّ
وأخيرًا نحل المشكلة ونعرض الحل. كل السحر يكمن في
operations_research::sat::SolveCpModel()
.
Python
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
// Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions;
Java
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
#C
// Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
عند تشغيل البرنامج، يعرض الإخراج التالي، والذي يكون فيه كل صف حلاً:
C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4 Statistics - status : OPTIMAL - conflicts : 110 - branches : 435 - wall time : 0.014934 ms - solutions found : 72
إكمال البرامج
إليك البرامج الكاملة
Python
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def main() -> None: """solve the CP+IS+FUN==TRUE cryptarithm.""" # Constraint programming engine model = cp_model.CpModel() base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e ) # Creates a solver and solves the model. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") print(f" sol found: {solution_printer.solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CPIsFunSat() { // Instantiate the solver. CpModelBuilder cp_model; const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E"); // Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::CPIsFunSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Cryptarithmetic puzzle. */ public final class CpIsFunSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Define constraints. model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); // Statistics. System.out.println("Statistics"); System.out.println(" - conflicts : " + solver.numConflicts()); System.out.println(" - branches : " + solver.numBranches()); System.out.println(" - wall time : " + solver.wallTime() + " s"); System.out.println(" - solutions : " + cb.getSolutionCount()); } private CpIsFunSat() {} }
#C
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.Sat; public class CpIsFunSat { public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } // Solve the CP+IS+FUN==TRUE cryptarithm. static void Main() { // Constraint programming engine CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
حلّ CP الأصلي
وفي هذه الحالة، سنتعامل مع القاعدة بوصفها متغيرًا، بحيث يمكنك حل المعادلة
للقواعد الأعلى. (لا يمكن أن تكون هناك حلول أساسية أقل
CP + IS + FUN = TRUE
بما أنّ الأحرف العشرة يجب أن تكون مختلفة.)
استيراد المكتبات
يستورد الرمز التالي المكتبة المطلوبة.
Python
from ortools.constraint_solver import pywrapcp
C++
#include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h"
Java
#C
using System; using Google.OrTools.ConstraintSolver;
جارٍ إنشاء أداة الحلّ
الخطوة الأولى هي إنشاء Solver
.
Python
solver = pywrapcp.Solver("CP is fun!")
C++
Solver solver("CP is fun!");
Java
Solver solver = new Solver("CP is fun!");
#C
Solver solver = new Solver("CP is fun!");
تعريف المتغيرات
الخطوة الأولى هي إنشاء IntVar
لكل حرف. نفرق بين
الأحرف التي يُحتمل أن تكون صفرًا وتلك التي لا يمكن تنفيذها (C
أو I
أو F
أو
وT
).
بعد ذلك، ننشئ صفيفًا يحتوي على IntVar
جديد لكل حرف. هذا فقط
ضروريًا لأنه عندما نحدد قيودنا، سنستخدم
AllDifferent
، لذا نحتاج إلى بعض المصفوفة التي يجب أن يختلف بها كل عنصر.
وأخيرًا، نتحقق من أن قاعدتنا لا تقل عن عدد الأحرف؛ وإلا، فلا يوجد حل.
Python
base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size());
Java
final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); }
#C
const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); }
تحديد القيود
الآن بعد أن حددنا المتغيرات، فإن الخطوة التالية هي تحديد القيود.
أولاً، نضيف القيد AllDifferent
، ما يجب أن يحتوي كل حرف على
رقم مختلف.
بعد ذلك، نضيف القيد CP + IS + FUN = TRUE
. تقوم نماذج البرامج بذلك
بطرق مختلفة.
Python
solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t )
C++
// Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum));
Java
solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2));
#C
solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);
جارٍ استدعاء أداة الحلّ
الآن بعد أن أصبح لدينا المتغيرات والقيود، نحن جاهزون لحلها.
الرمز البرمجي لطابعة الحلول، والذي يعرض كل حل على أنّه أداة الحلّ يعثر عليه، كما هو موضح أدناه.
نظرًا لوجود أكثر من حل لمشكلتنا، نكرر
باستخدام التكرار الحلقي while solver.NextSolution()
. إذا كنا نحاول فقط
لإيجاد حل واحد، فسنستخدم هذا المصطلح:\
if (solver.NextSolution()) { // Print solution. } else { // Print that no solution could be found. }
Python
solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}")
C++
int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions;
Java
int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution);
#C
int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}");
إكمال البرامج
إليك البرامج الكاملة
Python
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.constraint_solver import pywrapcp def main(): # Constraint programming engine solver = pywrapcp.Solver("CP is fun!") base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t ) solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { // Helper functions. IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2, const int64_t base) { return s->MakeSum(s->MakeProd(v1, base), v2)->Var(); } IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base); tmp_vars.push_back(v2); coefficients.push_back(base); tmp_vars.push_back(v3); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, IntVar* const v4, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base * base); tmp_vars.push_back(v2); coefficients.push_back(base * base); tmp_vars.push_back(v3); coefficients.push_back(base); tmp_vars.push_back(v4); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } void CPIsFunCp() { // Instantiate the solver. Solver solver("CP is fun!"); const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size()); // Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum)); int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace operations_research int main(int argc, char** argv) { InitGoogle(argv[0], &argc, &argv, true); absl::SetFlag(&FLAGS_stderrthreshold, 0); operations_research::CPIsFunCp(); return EXIT_SUCCESS; }
Java
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; /** Cryptarithmetic puzzle. */ public final class CpIsFunCp { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CP is fun!"); final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); } // Define constraints. solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2)); int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution); } private CpIsFunCp() {} }
#C
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.ConstraintSolver; public class CpIsFunCp { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CP is fun!"); const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); } // Define constraints. solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t); int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}"); } }