Zagadki kryptoarytmetyczne

Łamigłówka kryptograficzna to zadanie matematyczne, w którym cyfry niektórych liczb są przedstawiane za pomocą liter (lub symboli). Każda litera to unikalna cyfra. Celem jest znalezienie cyfr do zweryfikowania danego równania matematycznego:

      CP
+     IS
+    FUN
--------
=   TRUE

Po przypisaniu liter do cyfr otrzymuje to równanie:

      23
+     74
+    968
--------
=   1065

Są inne odpowiedzi dotyczące tego problemu. Pokażemy, jak znaleźć wszystkie rozwiązania.

Modelowanie problemu

Tak jak w przypadku każdego problemu z optymalizacją, zaczniemy od identyfikacji zmiennych i ograniczeń. Zmienne to litery, które mogą przyjąć dowolną wartość jednocyfrową.

W przypadku CP + IS + FUN = TRUE ograniczenia są następujące:

  • Równanie: CP + IS + FUN = TRUE.
  • Każda z dziesięciu liter musi być inną cyfrą.
  • Parametry C, I, F i T nie mogą wynosić 0 (ponieważ w liczbach nie zapisujemy zer na początku).

Zadania kryptoarytmetyczne możesz rozwiązywać za pomocą nowego, bardziej efektywnego rozwiązania CP-SAT, lub oryginalnego rozwiązania CP-SAT. Pokażemy Ci przykłady z użyciem obu rozwiązań, zaczynając od CP-SAT.

Rozwiązanie CP-SAT

Pokażemy zmienne, ograniczenia, wywołanie rozwiązania, a na koniec całe programy.

Zaimportuj biblioteki

Poniższy kod importuje wymaganą bibliotekę.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

C#

using System;
using Google.OrTools.Sat;

Deklarowanie modelu

Poniższy kod deklaruje model problemu.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

        CpModel model = new CpModel();

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Define constraints.
        model.AddAllDifferent(letters);

        // CP + IS + FUN = TRUE
        model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
                  t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  branches  : {solver.NumBranches()}");
        Console.WriteLine($"  wall time : {solver.WallTime()} s");
        Console.WriteLine($"  number of solutions found: {cb.SolutionCount()}");
    }
}

Definiowanie zmiennych

Podczas korzystania z rozwiązania CP-SAT warto zdefiniować pewne metody pomocnicze. Użyjemy jednego z nich, NewIntVar, do zadeklarowania liczb całkowitych. Rozróżniamy litery, które mogą mieć wartość 0, i te, które nie mogą tego robić (C, I, F i T).

Python

base = 10

c = model.new_int_var(1, base - 1, "C")
p = model.new_int_var(0, base - 1, "P")
i = model.new_int_var(1, base - 1, "I")
s = model.new_int_var(0, base - 1, "S")
f = model.new_int_var(1, base - 1, "F")
u = model.new_int_var(0, base - 1, "U")
n = model.new_int_var(0, base - 1, "N")
t = model.new_int_var(1, base - 1, "T")
r = model.new_int_var(0, base - 1, "R")
e = model.new_int_var(0, base - 1, "E")

# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]

# Verify that we have enough digits.
assert base >= len(letters)

C++

const int64_t kBase = 10;

// Define decision variables.
Domain digit(0, kBase - 1);
Domain non_zero_digit(1, kBase - 1);

IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C");
IntVar p = cp_model.NewIntVar(digit).WithName("P");
IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I");
IntVar s = cp_model.NewIntVar(digit).WithName("S");
IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F");
IntVar u = cp_model.NewIntVar(digit).WithName("U");
IntVar n = cp_model.NewIntVar(digit).WithName("N");
IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T");
IntVar r = cp_model.NewIntVar(digit).WithName("R");
IntVar e = cp_model.NewIntVar(digit).WithName("E");

Java

int base = 10;
IntVar c = model.newIntVar(1, base - 1, "C");
IntVar p = model.newIntVar(0, base - 1, "P");
IntVar i = model.newIntVar(1, base - 1, "I");
IntVar s = model.newIntVar(0, base - 1, "S");
IntVar f = model.newIntVar(1, base - 1, "F");
IntVar u = model.newIntVar(0, base - 1, "U");
IntVar n = model.newIntVar(0, base - 1, "N");
IntVar t = model.newIntVar(1, base - 1, "T");
IntVar r = model.newIntVar(0, base - 1, "R");
IntVar e = model.newIntVar(0, base - 1, "E");

// We need to group variables in a list to use the constraint AllDifferent.
IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

C#

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

Definiowanie ograniczeń

Dalej – ograniczenia. Najpierw za pomocą metody pomocniczej AddAllDifferent sprawdzamy, czy wszystkie litery mają różne wartości. Następnie używamy metody pomocniczej AddEquality do tworzenia ograniczeń, które wymuszają równość CP + IS + FUN = TRUE.

Python

model.add_all_different(letters)

# CP + IS + FUN = TRUE
model.add(
    c * base + p + i * base + s + f * base * base + u * base + n
    == t * base * base * base + r * base * base + u * base + e
)

C++

// Define constraints.
cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e});

// CP + IS + FUN = TRUE
cp_model.AddEquality(
    c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n,
    kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);

Java

model.addAllDifferent(letters);

// CP + IS + FUN = TRUE
model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
                      new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
                          -base * base, -base, -1}),
    0);

C#

// Define constraints.
model.AddAllDifferent(letters);

// CP + IS + FUN = TRUE
model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
          t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

Drukarka pomocnicza

Poniżej znajduje się kod drukarki rozwiązania, która wyświetla każde rozwiązanie w takiej postaci, jak znajdzie je rozwiązanie.

Python

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count 

C++

Model model;
int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) {
  LOG(INFO) << "Solution " << num_solutions;
  LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " "
            << "P=" << SolutionIntegerValue(response, p) << " "
            << "I=" << SolutionIntegerValue(response, i) << " "
            << "S=" << SolutionIntegerValue(response, s) << " "
            << "F=" << SolutionIntegerValue(response, f) << " "
            << "U=" << SolutionIntegerValue(response, u) << " "
            << "N=" << SolutionIntegerValue(response, n) << " "
            << "T=" << SolutionIntegerValue(response, t) << " "
            << "R=" << SolutionIntegerValue(response, r) << " "
            << "E=" << SolutionIntegerValue(response, e);
  num_solutions++;
}));

Java

static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
  public VarArraySolutionPrinter(IntVar[] variables) {
    variableArray = variables;
  }

  @Override
  public void onSolutionCallback() {
    for (IntVar v : variableArray) {
      System.out.printf("  %s = %d", v.getName(), value(v));
    }
    System.out.println();
    solutionCount++;
  }

  public int getSolutionCount() {
    return solutionCount;
  }

  private int solutionCount;
  private final IntVar[] variableArray;
}

C#

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            foreach (IntVar v in variables_)
            {
                Console.Write(String.Format("  {0}={1}", v.ToString(), Value(v)));
            }
            Console.WriteLine();
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

Wywoływanie rozwiązania

Na koniec rozwiązujemy problem i wyświetlamy rozwiązanie. Cała magia tkwi w metodzie operations_research::sat::SolveCpModel().

Python

solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter(letters)
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Solve.
status = solver.solve(model, solution_printer)

C++

// Tell the solver to enumerate all solutions.
SatParameters parameters;
parameters.set_enumerate_all_solutions(true);
model.Add(NewSatParameters(parameters));

const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
LOG(INFO) << "Number of solutions found: " << num_solutions;

Java

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// And solve.
solver.solve(model, cb);

C#

// Creates a solver and solves the model.
CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
// Search for all solutions.
solver.StringParameters = "enumerate_all_solutions:true";
// And solve.
solver.Solve(model, cb);

Po uruchomieniu programu wyświetlają się następujące dane wyjściowe, w których rozwiązaniem jest każdy wiersz:

C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5
C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5
C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6
C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6
C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5
C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4
C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4
C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7
C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4
C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7
C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7
C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7
C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7
C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4
C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7
C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4
C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4
C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6
C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4
C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5
C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5
C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6
C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5
C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4
C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4
C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6
C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4
C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4
C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6
C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7
C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7
C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6
C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7
C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7
C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7
C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7
C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5
C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5
C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4
C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6
C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7
C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7
C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6
C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7
C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7
C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4
C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6
C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4
C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7
C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7
C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6
C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5
C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5
C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6
C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7
C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7
C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4
C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4
C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4
C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5
C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5
C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7
C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4

Statistics
  - status          : OPTIMAL
  - conflicts       : 110
  - branches        : 435
  - wall time       : 0.014934 ms
  - solutions found : 72

Ukończ programy

Oto pełne programy.

Python

"""Cryptarithmetic puzzle.

First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.

This problem has 72 different solutions in base 10.
"""
from ortools.sat.python import cp_model


class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count


def main() -> None:
    """solve the CP+IS+FUN==TRUE cryptarithm."""
    # Constraint programming engine
    model = cp_model.CpModel()

    base = 10

    c = model.new_int_var(1, base - 1, "C")
    p = model.new_int_var(0, base - 1, "P")
    i = model.new_int_var(1, base - 1, "I")
    s = model.new_int_var(0, base - 1, "S")
    f = model.new_int_var(1, base - 1, "F")
    u = model.new_int_var(0, base - 1, "U")
    n = model.new_int_var(0, base - 1, "N")
    t = model.new_int_var(1, base - 1, "T")
    r = model.new_int_var(0, base - 1, "R")
    e = model.new_int_var(0, base - 1, "E")

    # We need to group variables in a list to use the constraint AllDifferent.
    letters = [c, p, i, s, f, u, n, t, r, e]

    # Verify that we have enough digits.
    assert base >= len(letters)

    # Define constraints.
    model.add_all_different(letters)

    # CP + IS + FUN = TRUE
    model.add(
        c * base + p + i * base + s + f * base * base + u * base + n
        == t * base * base * base + r * base * base + u * base + e
    )

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    solution_printer = VarArraySolutionPrinter(letters)
    # Enumerate all solutions.
    solver.parameters.enumerate_all_solutions = True
    # Solve.
    status = solver.solve(model, solution_printer)

    # Statistics.
    print("\nStatistics")
    print(f"  status   : {solver.status_name(status)}")
    print(f"  conflicts: {solver.num_conflicts}")
    print(f"  branches : {solver.num_branches}")
    print(f"  wall time: {solver.wall_time} s")
    print(f"  sol found: {solution_printer.solution_count}")


if __name__ == "__main__":
    main()

C++

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
#include <stdlib.h>

#include <cstdint>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void CPIsFunSat() {
  // Instantiate the solver.
  CpModelBuilder cp_model;

  const int64_t kBase = 10;

  // Define decision variables.
  Domain digit(0, kBase - 1);
  Domain non_zero_digit(1, kBase - 1);

  IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C");
  IntVar p = cp_model.NewIntVar(digit).WithName("P");
  IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I");
  IntVar s = cp_model.NewIntVar(digit).WithName("S");
  IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F");
  IntVar u = cp_model.NewIntVar(digit).WithName("U");
  IntVar n = cp_model.NewIntVar(digit).WithName("N");
  IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T");
  IntVar r = cp_model.NewIntVar(digit).WithName("R");
  IntVar e = cp_model.NewIntVar(digit).WithName("E");

  // Define constraints.
  cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e});

  // CP + IS + FUN = TRUE
  cp_model.AddEquality(
      c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n,
      kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);

  Model model;
  int num_solutions = 0;
  model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) {
    LOG(INFO) << "Solution " << num_solutions;
    LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " "
              << "P=" << SolutionIntegerValue(response, p) << " "
              << "I=" << SolutionIntegerValue(response, i) << " "
              << "S=" << SolutionIntegerValue(response, s) << " "
              << "F=" << SolutionIntegerValue(response, f) << " "
              << "U=" << SolutionIntegerValue(response, u) << " "
              << "N=" << SolutionIntegerValue(response, n) << " "
              << "T=" << SolutionIntegerValue(response, t) << " "
              << "R=" << SolutionIntegerValue(response, r) << " "
              << "E=" << SolutionIntegerValue(response, e);
    num_solutions++;
  }));

  // Tell the solver to enumerate all solutions.
  SatParameters parameters;
  parameters.set_enumerate_all_solutions(true);
  model.Add(NewSatParameters(parameters));

  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
  LOG(INFO) << "Number of solutions found: " << num_solutions;

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::CPIsFunSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

/** Cryptarithmetic puzzle. */
public final class CpIsFunSat {
  static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
    public VarArraySolutionPrinter(IntVar[] variables) {
      variableArray = variables;
    }

    @Override
    public void onSolutionCallback() {
      for (IntVar v : variableArray) {
        System.out.printf("  %s = %d", v.getName(), value(v));
      }
      System.out.println();
      solutionCount++;
    }

    public int getSolutionCount() {
      return solutionCount;
    }

    private int solutionCount;
    private final IntVar[] variableArray;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    int base = 10;
    IntVar c = model.newIntVar(1, base - 1, "C");
    IntVar p = model.newIntVar(0, base - 1, "P");
    IntVar i = model.newIntVar(1, base - 1, "I");
    IntVar s = model.newIntVar(0, base - 1, "S");
    IntVar f = model.newIntVar(1, base - 1, "F");
    IntVar u = model.newIntVar(0, base - 1, "U");
    IntVar n = model.newIntVar(0, base - 1, "N");
    IntVar t = model.newIntVar(1, base - 1, "T");
    IntVar r = model.newIntVar(0, base - 1, "R");
    IntVar e = model.newIntVar(0, base - 1, "E");

    // We need to group variables in a list to use the constraint AllDifferent.
    IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

    // Define constraints.
    model.addAllDifferent(letters);

    // CP + IS + FUN = TRUE
    model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
                          new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
                              -base * base, -base, -1}),
        0);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
    // Tell the solver to enumerate all solutions.
    solver.getParameters().setEnumerateAllSolutions(true);
    // And solve.
    solver.solve(model, cb);

    // Statistics.
    System.out.println("Statistics");
    System.out.println("  - conflicts : " + solver.numConflicts());
    System.out.println("  - branches  : " + solver.numBranches());
    System.out.println("  - wall time : " + solver.wallTime() + " s");
    System.out.println("  - solutions : " + cb.getSolutionCount());
  }

  private CpIsFunSat() {}
}

C#

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
using System;
using Google.OrTools.Sat;

public class CpIsFunSat
{
    public class VarArraySolutionPrinter : CpSolverSolutionCallback
    {
        public VarArraySolutionPrinter(IntVar[] variables)
        {
            variables_ = variables;
        }

        public override void OnSolutionCallback()
        {
            {
                foreach (IntVar v in variables_)
                {
                    Console.Write(String.Format("  {0}={1}", v.ToString(), Value(v)));
                }
                Console.WriteLine();
                solution_count_++;
            }
        }

        public int SolutionCount()
        {
            return solution_count_;
        }

        private int solution_count_;
        private IntVar[] variables_;
    }

    // Solve the CP+IS+FUN==TRUE cryptarithm.
    static void Main()
    {
        // Constraint programming engine
        CpModel model = new CpModel();

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Define constraints.
        model.AddAllDifferent(letters);

        // CP + IS + FUN = TRUE
        model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
                  t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  branches  : {solver.NumBranches()}");
        Console.WriteLine($"  wall time : {solver.WallTime()} s");
        Console.WriteLine($"  number of solutions found: {cb.SolutionCount()}");
    }
}

Oryginalne rozwiązanie CP

W tym przypadku potraktujemy podstawę jako zmienną, dzięki czemu możesz rozwiązać równanie dla wyższych podstaw. (nie może występować rozwiązań CP + IS + FUN = TRUE o niższej podstawie, bo wszystkie litery muszą być różne).

Zaimportuj biblioteki

Poniższy kod importuje wymaganą bibliotekę.

Python

from ortools.constraint_solver import pywrapcp

C++

#include <cstdint>
#include <vector>

#include "absl/flags/flag.h"
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"

Java


  

C#

using System;
using Google.OrTools.ConstraintSolver;

Tworzenie rozwiązania

Pierwszym krokiem jest utworzenie Solver.

Python

solver = pywrapcp.Solver("CP is fun!")

C++

Solver solver("CP is fun!");

Java

Solver solver = new Solver("CP is fun!");

C#

Solver solver = new Solver("CP is fun!");

Definiowanie zmiennych

Najpierw utwórz IntVar na każdą literę. Rozróżniamy litery, które mogą mieć wartość 0, i te, które nie mogą tego robić (C, I, F i T).

Następnie tworzymy tablicę zawierającą nowe znaki IntVar na każdą literę. Jest to konieczne tylko dlatego, że podczas definiowania ograniczeń użyjemy AllDifferent. Potrzebna jest więc tablica, pod którą każdy element musi się różnić.

Na koniec sprawdzamy, czy liczba znaków w podstawie wynosi co najmniej tyle, ile wynosi liczba liter. W przeciwnym razie nie ma rozwiązania.

Python

base = 10

# Decision variables.
digits = list(range(0, base))
digits_without_zero = list(range(1, base))
c = solver.IntVar(digits_without_zero, "C")
p = solver.IntVar(digits, "P")
i = solver.IntVar(digits_without_zero, "I")
s = solver.IntVar(digits, "S")
f = solver.IntVar(digits_without_zero, "F")
u = solver.IntVar(digits, "U")
n = solver.IntVar(digits, "N")
t = solver.IntVar(digits_without_zero, "T")
r = solver.IntVar(digits, "R")
e = solver.IntVar(digits, "E")

# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]

# Verify that we have enough digits.
assert base >= len(letters)

C++

const int64_t kBase = 10;

// Define decision variables.
IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C");
IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P");
IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I");
IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S");
IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F");
IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U");
IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N");
IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T");
IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R");
IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E");

// We need to group variables in a vector to be able to use
// the global constraint AllDifferent
std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e};

// Check if we have enough digits
CHECK_GE(kBase, letters.size());

Java

final int base = 10;

// Decision variables.
final IntVar c = solver.makeIntVar(1, base - 1, "C");
final IntVar p = solver.makeIntVar(0, base - 1, "P");
final IntVar i = solver.makeIntVar(1, base - 1, "I");
final IntVar s = solver.makeIntVar(0, base - 1, "S");
final IntVar f = solver.makeIntVar(1, base - 1, "F");
final IntVar u = solver.makeIntVar(0, base - 1, "U");
final IntVar n = solver.makeIntVar(0, base - 1, "N");
final IntVar t = solver.makeIntVar(1, base - 1, "T");
final IntVar r = solver.makeIntVar(0, base - 1, "R");
final IntVar e = solver.makeIntVar(0, base - 1, "E");

// Group variables in a vector so that we can use AllDifferent.
final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

// Verify that we have enough digits.
if (base < letters.length) {
  throw new Exception("base < letters.Length");
}

C#

const int kBase = 10;

// Decision variables.
IntVar c = solver.MakeIntVar(1, kBase - 1, "C");
IntVar p = solver.MakeIntVar(0, kBase - 1, "P");
IntVar i = solver.MakeIntVar(1, kBase - 1, "I");
IntVar s = solver.MakeIntVar(0, kBase - 1, "S");
IntVar f = solver.MakeIntVar(1, kBase - 1, "F");
IntVar u = solver.MakeIntVar(0, kBase - 1, "U");
IntVar n = solver.MakeIntVar(0, kBase - 1, "N");
IntVar t = solver.MakeIntVar(1, kBase - 1, "T");
IntVar r = solver.MakeIntVar(0, kBase - 1, "R");
IntVar e = solver.MakeIntVar(0, kBase - 1, "E");

// Group variables in a vector so that we can use AllDifferent.
IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

// Verify that we have enough digits.
if (kBase < letters.Length)
{
    throw new Exception("kBase < letters.Length");
}

Definiowanie ograniczeń

Po zdefiniowaniu zmiennych możesz przejść do zdefiniowania ograniczeń. Najpierw dodajemy ograniczenie AllDifferent, aby każda litera miała inną cyfrę.

Następnie dodajemy ograniczenie CP + IS + FUN = TRUE. W przykładowych programach robi się to na różne sposoby.

Python

solver.Add(solver.AllDifferent(letters))

# CP + IS + FUN = TRUE
solver.Add(
    p + s + n + base * (c + i + u) + base * base * f
    == e + base * u + base * base * r + base * base * base * t
)

C++

// Define constraints.
solver.AddConstraint(solver.MakeAllDifferent(letters));

// CP + IS + FUN = TRUE
IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase);
IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase);
IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase);
IntVar* const sum_terms =
    solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var();

IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase);

solver.AddConstraint(solver.MakeEquality(sum_terms, sum));

Java

solver.addConstraint(solver.makeAllDifferent(letters));

// CP + IS + FUN = TRUE
final IntVar sum1 =
    solver
        .makeSum(new IntVar[] {p, s, n,
            solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(),
            solver.makeProd(f, base * base).var()})
        .var();
final IntVar sum2 = solver
                        .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(),
                            solver.makeProd(r, base * base).var(),
                            solver.makeProd(t, base * base * base).var()})
                        .var();
solver.addConstraint(solver.makeEquality(sum1, sum2));

C#

solver.Add(letters.AllDifferent());

// CP + IS + FUN = TRUE
solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
           e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);

Wywoływanie rozwiązania

Mając już zmienne i ograniczenia, możemy zająć się rozwiązaniem problemu.

Poniżej znajduje się kod drukarki rozwiązania, która wyświetla każde rozwiązanie w takiej postaci, jak znajdzie je rozwiązanie.

Istnieje więcej niż jedno rozwiązanie tego problemu, dlatego powtarzamy je za pomocą pętli while solver.NextSolution(). Gdybyśmy szukali rozwiązania, użylibyśmy tego idiomu:\

if (solver.NextSolution()) {
    // Print solution.
} else {
    // Print that no solution could be found.
}

Python

solution_count = 0
db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT)
solver.NewSearch(db)
while solver.NextSolution():
    print(letters)
    # Is CP + IS + FUN = TRUE?
    assert (
        base * c.Value()
        + p.Value()
        + base * i.Value()
        + s.Value()
        + base * base * f.Value()
        + base * u.Value()
        + n.Value()
        == base * base * base * t.Value()
        + base * base * r.Value()
        + base * u.Value()
        + e.Value()
    )
    solution_count += 1
solver.EndSearch()
print(f"Number of solutions found: {solution_count}")

C++

int num_solutions = 0;
// Create decision builder to search for solutions.
DecisionBuilder* const db = solver.MakePhase(
    letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution()) {
  LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " "
            << "I=" << i->Value() << " " << "S=" << s->Value() << " "
            << "F=" << f->Value() << " " << "U=" << u->Value() << " "
            << "N=" << n->Value() << " " << "T=" << t->Value() << " "
            << "R=" << r->Value() << " " << "E=" << e->Value();

  // Is CP + IS + FUN = TRUE?
  CHECK_EQ(p->Value() + s->Value() + n->Value() +
               kBase * (c->Value() + i->Value() + u->Value()) +
               kBase * kBase * f->Value(),
           e->Value() + kBase * u->Value() + kBase * kBase * r->Value() +
               kBase * kBase * kBase * t->Value());
  num_solutions++;
}
solver.EndSearch();
LOG(INFO) << "Number of solutions found: " << num_solutions;

Java

int countSolution = 0;
// Create the decision builder to search for solutions.
final DecisionBuilder db =
    solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.newSearch(db);
while (solver.nextSolution()) {
  System.out.println("C=" + c.value() + " P=" + p.value());
  System.out.println(" I=" + i.value() + " S=" + s.value());
  System.out.println(" F=" + f.value() + " U=" + u.value());
  System.out.println(" N=" + n.value() + " T=" + t.value());
  System.out.println(" R=" + r.value() + " E=" + e.value());

  // Is CP + IS + FUN = TRUE?
  if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value())
          + base * base * f.value()
      != e.value() + base * u.value() + base * base * r.value()
          + base * base * base * t.value()) {
    throw new Exception("CP + IS + FUN != TRUE");
  }
  countSolution++;
}
solver.endSearch();
System.out.println("Number of solutions found: " + countSolution);

C#

int SolutionCount = 0;
// Create the decision builder to search for solutions.
DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
    Console.Write("C=" + c.Value() + " P=" + p.Value());
    Console.Write(" I=" + i.Value() + " S=" + s.Value());
    Console.Write(" F=" + f.Value() + " U=" + u.Value());
    Console.Write(" N=" + n.Value() + " T=" + t.Value());
    Console.Write(" R=" + r.Value() + " E=" + e.Value());
    Console.WriteLine();

    // Is CP + IS + FUN = TRUE?
    if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) +
            kBase * kBase * f.Value() !=
        e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value())
    {
        throw new Exception("CP + IS + FUN != TRUE");
    }
    SolutionCount++;
}
solver.EndSearch();
Console.WriteLine($"Number of solutions found: {SolutionCount}");

Ukończ programy

Oto pełne programy.

Python

"""Cryptarithmetic puzzle.

First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.

This problem has 72 different solutions in base 10.
"""
from ortools.constraint_solver import pywrapcp


def main():
    # Constraint programming engine
    solver = pywrapcp.Solver("CP is fun!")

    base = 10

    # Decision variables.
    digits = list(range(0, base))
    digits_without_zero = list(range(1, base))
    c = solver.IntVar(digits_without_zero, "C")
    p = solver.IntVar(digits, "P")
    i = solver.IntVar(digits_without_zero, "I")
    s = solver.IntVar(digits, "S")
    f = solver.IntVar(digits_without_zero, "F")
    u = solver.IntVar(digits, "U")
    n = solver.IntVar(digits, "N")
    t = solver.IntVar(digits_without_zero, "T")
    r = solver.IntVar(digits, "R")
    e = solver.IntVar(digits, "E")

    # We need to group variables in a list to use the constraint AllDifferent.
    letters = [c, p, i, s, f, u, n, t, r, e]

    # Verify that we have enough digits.
    assert base >= len(letters)

    # Define constraints.
    solver.Add(solver.AllDifferent(letters))

    # CP + IS + FUN = TRUE
    solver.Add(
        p + s + n + base * (c + i + u) + base * base * f
        == e + base * u + base * base * r + base * base * base * t
    )

    solution_count = 0
    db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT)
    solver.NewSearch(db)
    while solver.NextSolution():
        print(letters)
        # Is CP + IS + FUN = TRUE?
        assert (
            base * c.Value()
            + p.Value()
            + base * i.Value()
            + s.Value()
            + base * base * f.Value()
            + base * u.Value()
            + n.Value()
            == base * base * base * t.Value()
            + base * base * r.Value()
            + base * u.Value()
            + e.Value()
        )
        solution_count += 1
    solver.EndSearch()
    print(f"Number of solutions found: {solution_count}")


if __name__ == "__main__":
    main()

C++

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
#include <cstdint>
#include <vector>

#include "absl/flags/flag.h"
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"

namespace operations_research {

// Helper functions.
IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2,
                      const int64_t base) {
  return s->MakeSum(s->MakeProd(v1, base), v2)->Var();
}

IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2,
                      IntVar* const v3, const int64_t base) {
  std::vector<IntVar*> tmp_vars;
  std::vector<int64_t> coefficients;
  tmp_vars.push_back(v1);
  coefficients.push_back(base * base);
  tmp_vars.push_back(v2);
  coefficients.push_back(base);
  tmp_vars.push_back(v3);
  coefficients.push_back(1);

  return s->MakeScalProd(tmp_vars, coefficients)->Var();
}

IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2,
                      IntVar* const v3, IntVar* const v4, const int64_t base) {
  std::vector<IntVar*> tmp_vars;
  std::vector<int64_t> coefficients;
  tmp_vars.push_back(v1);
  coefficients.push_back(base * base * base);
  tmp_vars.push_back(v2);
  coefficients.push_back(base * base);
  tmp_vars.push_back(v3);
  coefficients.push_back(base);
  tmp_vars.push_back(v4);
  coefficients.push_back(1);

  return s->MakeScalProd(tmp_vars, coefficients)->Var();
}

void CPIsFunCp() {
  // Instantiate the solver.
  Solver solver("CP is fun!");

  const int64_t kBase = 10;

  // Define decision variables.
  IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C");
  IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P");
  IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I");
  IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S");
  IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F");
  IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U");
  IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N");
  IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T");
  IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R");
  IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E");

  // We need to group variables in a vector to be able to use
  // the global constraint AllDifferent
  std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e};

  // Check if we have enough digits
  CHECK_GE(kBase, letters.size());

  // Define constraints.
  solver.AddConstraint(solver.MakeAllDifferent(letters));

  // CP + IS + FUN = TRUE
  IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase);
  IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase);
  IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase);
  IntVar* const sum_terms =
      solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var();

  IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase);

  solver.AddConstraint(solver.MakeEquality(sum_terms, sum));

  int num_solutions = 0;
  // Create decision builder to search for solutions.
  DecisionBuilder* const db = solver.MakePhase(
      letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
  solver.NewSearch(db);
  while (solver.NextSolution()) {
    LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " "
              << "I=" << i->Value() << " " << "S=" << s->Value() << " "
              << "F=" << f->Value() << " " << "U=" << u->Value() << " "
              << "N=" << n->Value() << " " << "T=" << t->Value() << " "
              << "R=" << r->Value() << " " << "E=" << e->Value();

    // Is CP + IS + FUN = TRUE?
    CHECK_EQ(p->Value() + s->Value() + n->Value() +
                 kBase * (c->Value() + i->Value() + u->Value()) +
                 kBase * kBase * f->Value(),
             e->Value() + kBase * u->Value() + kBase * kBase * r->Value() +
                 kBase * kBase * kBase * t->Value());
    num_solutions++;
  }
  solver.EndSearch();
  LOG(INFO) << "Number of solutions found: " << num_solutions;
}

}  // namespace operations_research

int main(int argc, char** argv) {
  InitGoogle(argv[0], &argc, &argv, true);
  absl::SetFlag(&FLAGS_stderrthreshold, 0);
  operations_research::CPIsFunCp();
  return EXIT_SUCCESS;
}

Java

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;

/** Cryptarithmetic puzzle. */
public final class CpIsFunCp {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the solver.
    Solver solver = new Solver("CP is fun!");

    final int base = 10;

    // Decision variables.
    final IntVar c = solver.makeIntVar(1, base - 1, "C");
    final IntVar p = solver.makeIntVar(0, base - 1, "P");
    final IntVar i = solver.makeIntVar(1, base - 1, "I");
    final IntVar s = solver.makeIntVar(0, base - 1, "S");
    final IntVar f = solver.makeIntVar(1, base - 1, "F");
    final IntVar u = solver.makeIntVar(0, base - 1, "U");
    final IntVar n = solver.makeIntVar(0, base - 1, "N");
    final IntVar t = solver.makeIntVar(1, base - 1, "T");
    final IntVar r = solver.makeIntVar(0, base - 1, "R");
    final IntVar e = solver.makeIntVar(0, base - 1, "E");

    // Group variables in a vector so that we can use AllDifferent.
    final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

    // Verify that we have enough digits.
    if (base < letters.length) {
      throw new Exception("base < letters.Length");
    }

    // Define constraints.
    solver.addConstraint(solver.makeAllDifferent(letters));

    // CP + IS + FUN = TRUE
    final IntVar sum1 =
        solver
            .makeSum(new IntVar[] {p, s, n,
                solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(),
                solver.makeProd(f, base * base).var()})
            .var();
    final IntVar sum2 = solver
                            .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(),
                                solver.makeProd(r, base * base).var(),
                                solver.makeProd(t, base * base * base).var()})
                            .var();
    solver.addConstraint(solver.makeEquality(sum1, sum2));

    int countSolution = 0;
    // Create the decision builder to search for solutions.
    final DecisionBuilder db =
        solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
    solver.newSearch(db);
    while (solver.nextSolution()) {
      System.out.println("C=" + c.value() + " P=" + p.value());
      System.out.println(" I=" + i.value() + " S=" + s.value());
      System.out.println(" F=" + f.value() + " U=" + u.value());
      System.out.println(" N=" + n.value() + " T=" + t.value());
      System.out.println(" R=" + r.value() + " E=" + e.value());

      // Is CP + IS + FUN = TRUE?
      if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value())
              + base * base * f.value()
          != e.value() + base * u.value() + base * base * r.value()
              + base * base * base * t.value()) {
        throw new Exception("CP + IS + FUN != TRUE");
      }
      countSolution++;
    }
    solver.endSearch();
    System.out.println("Number of solutions found: " + countSolution);
  }

  private CpIsFunCp() {}
}

C#

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
using System;
using Google.OrTools.ConstraintSolver;

public class CpIsFunCp
{
    public static void Main(String[] args)
    {
        // Instantiate the solver.
        Solver solver = new Solver("CP is fun!");

        const int kBase = 10;

        // Decision variables.
        IntVar c = solver.MakeIntVar(1, kBase - 1, "C");
        IntVar p = solver.MakeIntVar(0, kBase - 1, "P");
        IntVar i = solver.MakeIntVar(1, kBase - 1, "I");
        IntVar s = solver.MakeIntVar(0, kBase - 1, "S");
        IntVar f = solver.MakeIntVar(1, kBase - 1, "F");
        IntVar u = solver.MakeIntVar(0, kBase - 1, "U");
        IntVar n = solver.MakeIntVar(0, kBase - 1, "N");
        IntVar t = solver.MakeIntVar(1, kBase - 1, "T");
        IntVar r = solver.MakeIntVar(0, kBase - 1, "R");
        IntVar e = solver.MakeIntVar(0, kBase - 1, "E");

        // Group variables in a vector so that we can use AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Verify that we have enough digits.
        if (kBase < letters.Length)
        {
            throw new Exception("kBase < letters.Length");
        }

        // Define constraints.
        solver.Add(letters.AllDifferent());

        // CP + IS + FUN = TRUE
        solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
                   e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);

        int SolutionCount = 0;
        // Create the decision builder to search for solutions.
        DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
        solver.NewSearch(db);
        while (solver.NextSolution())
        {
            Console.Write("C=" + c.Value() + " P=" + p.Value());
            Console.Write(" I=" + i.Value() + " S=" + s.Value());
            Console.Write(" F=" + f.Value() + " U=" + u.Value());
            Console.Write(" N=" + n.Value() + " T=" + t.Value());
            Console.Write(" R=" + r.Value() + " E=" + e.Value());
            Console.WriteLine();

            // Is CP + IS + FUN = TRUE?
            if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) +
                    kBase * kBase * f.Value() !=
                e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value())
            {
                throw new Exception("CP + IS + FUN != TRUE");
            }
            SolutionCount++;
        }
        solver.EndSearch();
        Console.WriteLine($"Number of solutions found: {SolutionCount}");
    }
}