quebra-cabeça criptoaritmético é um exercício matemático em que os dígitos de alguns e números são representados por letras (ou símbolos). Cada letra representa uma dígito. O objetivo é encontrar os dígitos de modo que uma determinada equação matemática seja verificados:
CP
+ IS
+ FUN
--------
= TRUEUma atribuição de letras a dígitos resulta na seguinte equação:
23
+ 74
+ 968
--------
= 1065Há outras respostas para esse problema. Vamos mostrar como encontrar todas as soluções.
Modelagem do problema
Como em qualquer problema de otimização, vamos começar identificando as variáveis e restrições. As variáveis são as letras, que podem assumir qualquer dígito único .
Para CP + IS + FUN = TRUE, as restrições são as seguintes:
- A equação:
CP + IS + FUN = TRUE. - Cada uma das dez letras deve ser um dígito diferente.
C,I,FeTnão podem ser zero (já que não escrevemos zeros à esquerda na números).
É possível resolver problemas criptoaritméticos com o novo solucionador CP-SAT, que é mais eficiente, ou o solucionador de CP original. Mostraremos exemplos usando os dois solucionadores, começando com CP-SAT.
Solução CP-SAT
Vamos mostrar as variáveis, as restrições, a invocação do solucionador e os programas completos.
Importar as bibliotecas
O código a seguir importa a biblioteca necessária.
Python
from ortools.sat.python import cp_model
C++
#include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h"
Java
import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr;
C#
using System; using Google.OrTools.Sat;
Declarar o modelo
O código a seguir declara o modelo do problema.
Python
model = cp_model.CpModel()
C++
CpModelBuilder cp_model;
Java
CpModel model = new CpModel();
C#
CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
Como definir as variáveis
Ao usar o solucionador CP-SAT, há alguns métodos auxiliares úteis para
a definição.
Vamos usar um deles, NewIntVar, para declarar os dígitos (inteiros).
Distinguimos entre as letras que podem ser zero das que
não podem (C, I, F e T).
Python
base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E");
Java
int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};
C#
int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };
Como definir as restrições
A seguir, as restrições. Primeiro, garantimos que todas as letras tenham valores diferentes,
usando o método auxiliar AddAllDifferent. Em seguida, usamos o auxiliar AddEquality.
para criar restrições que apliquem a igualdade de CP + IS + FUN = TRUE.
Python
model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e )
C++
// Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);
Java
model.addAllDifferent(letters);
// CP + IS + FUN = TRUE
model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
-base * base, -base, -1}),
0);C#
// Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);
Impressora da solução
O código da impressora da solução, que mostra cada solução como o solucionador o local onde ele é encontrado, é mostrado abaixo.
Python
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count
C++
Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; }));
Java
static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; }
C#
public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; }
Como invocar o solucionador
Por fim, resolvemos o problema e exibimos a solução. Toda a magia está no
operations_research::sat::SolveCpModel()
.
Python
solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer)
C++
// Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions;
Java
CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb);
C#
// Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb);
Quando o programa é executado, ele exibe a seguinte saída, em que cada linha é uma solução:
C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4 C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7 C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6 C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7 C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7 C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5 C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5 C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6 C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7 C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6 C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7 C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6 C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4 C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7 C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6 C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5 C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6 C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7 C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7 C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4 C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4 C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4 C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5 C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5 C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7 C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4 C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4 Statistics - status : OPTIMAL - conflicts : 110 - branches : 435 - wall time : 0.014934 ms - solutions found : 72
Programas completos
Estes são os programas completos.
Python
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.sat.python import cp_model class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback): """Print intermediate solutions.""" def __init__(self, variables: list[cp_model.IntVar]): cp_model.CpSolverSolutionCallback.__init__(self) self.__variables = variables self.__solution_count = 0 def on_solution_callback(self) -> None: self.__solution_count += 1 for v in self.__variables: print(f"{v}={self.value(v)}", end=" ") print() @property def solution_count(self) -> int: return self.__solution_count def main() -> None: """solve the CP+IS+FUN==TRUE cryptarithm.""" # Constraint programming engine model = cp_model.CpModel() base = 10 c = model.new_int_var(1, base - 1, "C") p = model.new_int_var(0, base - 1, "P") i = model.new_int_var(1, base - 1, "I") s = model.new_int_var(0, base - 1, "S") f = model.new_int_var(1, base - 1, "F") u = model.new_int_var(0, base - 1, "U") n = model.new_int_var(0, base - 1, "N") t = model.new_int_var(1, base - 1, "T") r = model.new_int_var(0, base - 1, "R") e = model.new_int_var(0, base - 1, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. model.add_all_different(letters) # CP + IS + FUN = TRUE model.add( c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e ) # Creates a solver and solves the model. solver = cp_model.CpSolver() solution_printer = VarArraySolutionPrinter(letters) # Enumerate all solutions. solver.parameters.enumerate_all_solutions = True # Solve. status = solver.solve(model, solution_printer) # Statistics. print("\nStatistics") print(f" status : {solver.status_name(status)}") print(f" conflicts: {solver.num_conflicts}") print(f" branches : {solver.num_branches}") print(f" wall time: {solver.wall_time} s") print(f" sol found: {solution_printer.solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <stdlib.h> #include <cstdint> #include "ortools/base/logging.h" #include "ortools/sat/cp_model.h" #include "ortools/sat/cp_model.pb.h" #include "ortools/sat/cp_model_solver.h" #include "ortools/sat/model.h" #include "ortools/sat/sat_parameters.pb.h" #include "ortools/util/sorted_interval_list.h" namespace operations_research { namespace sat { void CPIsFunSat() { // Instantiate the solver. CpModelBuilder cp_model; const int64_t kBase = 10; // Define decision variables. Domain digit(0, kBase - 1); Domain non_zero_digit(1, kBase - 1); IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C"); IntVar p = cp_model.NewIntVar(digit).WithName("P"); IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I"); IntVar s = cp_model.NewIntVar(digit).WithName("S"); IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F"); IntVar u = cp_model.NewIntVar(digit).WithName("U"); IntVar n = cp_model.NewIntVar(digit).WithName("N"); IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T"); IntVar r = cp_model.NewIntVar(digit).WithName("R"); IntVar e = cp_model.NewIntVar(digit).WithName("E"); // Define constraints. cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e}); // CP + IS + FUN = TRUE cp_model.AddEquality( c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n, kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e); Model model; int num_solutions = 0; model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) { LOG(INFO) << "Solution " << num_solutions; LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " " << "P=" << SolutionIntegerValue(response, p) << " " << "I=" << SolutionIntegerValue(response, i) << " " << "S=" << SolutionIntegerValue(response, s) << " " << "F=" << SolutionIntegerValue(response, f) << " " << "U=" << SolutionIntegerValue(response, u) << " " << "N=" << SolutionIntegerValue(response, n) << " " << "T=" << SolutionIntegerValue(response, t) << " " << "R=" << SolutionIntegerValue(response, r) << " " << "E=" << SolutionIntegerValue(response, e); num_solutions++; })); // Tell the solver to enumerate all solutions. SatParameters parameters; parameters.set_enumerate_all_solutions(true); model.Add(NewSatParameters(parameters)); const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model); LOG(INFO) << "Number of solutions found: " << num_solutions; // Statistics. LOG(INFO) << "Statistics"; LOG(INFO) << CpSolverResponseStats(response); } } // namespace sat } // namespace operations_research int main(int argc, char** argv) { operations_research::sat::CPIsFunSat(); return EXIT_SUCCESS; }
Java
package com.google.ortools.sat.samples; import com.google.ortools.Loader; import com.google.ortools.sat.CpModel; import com.google.ortools.sat.CpSolver; import com.google.ortools.sat.CpSolverSolutionCallback; import com.google.ortools.sat.IntVar; import com.google.ortools.sat.LinearExpr; /** Cryptarithmetic puzzle. */ public final class CpIsFunSat { static class VarArraySolutionPrinter extends CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variableArray = variables; } @Override public void onSolutionCallback() { for (IntVar v : variableArray) { System.out.printf(" %s = %d", v.getName(), value(v)); } System.out.println(); solutionCount++; } public int getSolutionCount() { return solutionCount; } private int solutionCount; private final IntVar[] variableArray; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Create the model. CpModel model = new CpModel(); int base = 10; IntVar c = model.newIntVar(1, base - 1, "C"); IntVar p = model.newIntVar(0, base - 1, "P"); IntVar i = model.newIntVar(1, base - 1, "I"); IntVar s = model.newIntVar(0, base - 1, "S"); IntVar f = model.newIntVar(1, base - 1, "F"); IntVar u = model.newIntVar(0, base - 1, "U"); IntVar n = model.newIntVar(0, base - 1, "N"); IntVar t = model.newIntVar(1, base - 1, "T"); IntVar r = model.newIntVar(0, base - 1, "R"); IntVar e = model.newIntVar(0, base - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Define constraints. model.addAllDifferent(letters); // CP + IS + FUN = TRUE model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e}, new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base, -base * base, -base, -1}), 0); // Create a solver and solve the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Tell the solver to enumerate all solutions. solver.getParameters().setEnumerateAllSolutions(true); // And solve. solver.solve(model, cb); // Statistics. System.out.println("Statistics"); System.out.println(" - conflicts : " + solver.numConflicts()); System.out.println(" - branches : " + solver.numBranches()); System.out.println(" - wall time : " + solver.wallTime() + " s"); System.out.println(" - solutions : " + cb.getSolutionCount()); } private CpIsFunSat() {} }
C#
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.Sat; public class CpIsFunSat { public class VarArraySolutionPrinter : CpSolverSolutionCallback { public VarArraySolutionPrinter(IntVar[] variables) { variables_ = variables; } public override void OnSolutionCallback() { { foreach (IntVar v in variables_) { Console.Write(String.Format(" {0}={1}", v.ToString(), Value(v))); } Console.WriteLine(); solution_count_++; } } public int SolutionCount() { return solution_count_; } private int solution_count_; private IntVar[] variables_; } // Solve the CP+IS+FUN==TRUE cryptarithm. static void Main() { // Constraint programming engine CpModel model = new CpModel(); int kBase = 10; IntVar c = model.NewIntVar(1, kBase - 1, "C"); IntVar p = model.NewIntVar(0, kBase - 1, "P"); IntVar i = model.NewIntVar(1, kBase - 1, "I"); IntVar s = model.NewIntVar(0, kBase - 1, "S"); IntVar f = model.NewIntVar(1, kBase - 1, "F"); IntVar u = model.NewIntVar(0, kBase - 1, "U"); IntVar n = model.NewIntVar(0, kBase - 1, "N"); IntVar t = model.NewIntVar(1, kBase - 1, "T"); IntVar r = model.NewIntVar(0, kBase - 1, "R"); IntVar e = model.NewIntVar(0, kBase - 1, "E"); // We need to group variables in a list to use the constraint AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Define constraints. model.AddAllDifferent(letters); // CP + IS + FUN = TRUE model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n == t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e); // Creates a solver and solves the model. CpSolver solver = new CpSolver(); VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters); // Search for all solutions. solver.StringParameters = "enumerate_all_solutions:true"; // And solve. solver.Solve(model, cb); Console.WriteLine("Statistics"); Console.WriteLine($" conflicts : {solver.NumConflicts()}"); Console.WriteLine($" branches : {solver.NumBranches()}"); Console.WriteLine($" wall time : {solver.WallTime()} s"); Console.WriteLine($" number of solutions found: {cb.SolutionCount()}"); } }
Solução CP original
Neste caso, vamos tratar a base como uma variável, então você pode resolver a equação
para bases mais altas. (Não pode haver soluções de base inferior para
CP + IS + FUN = TRUE, já que as dez letras precisam ser todas diferentes.
Importar as bibliotecas
O código a seguir importa a biblioteca necessária.
Python
from ortools.constraint_solver import pywrapcp
C++
#include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h"
Java
C#
using System; using Google.OrTools.ConstraintSolver;
Como criar o solucionador
A primeira etapa é criar o Solver.
Python
solver = pywrapcp.Solver("CP is fun!")
C++
Solver solver("CP is fun!");
Java
Solver solver = new Solver("CP is fun!");
C#
Solver solver = new Solver("CP is fun!");
Como definir as variáveis
A primeira etapa é criar um IntVar para cada letra. Distinguimos entre
as letras que podem ser zero e as que não podem (C, I, F,
e T).
Em seguida, criamos uma matriz contendo um novo IntVar para cada letra. Isso só
necessário porque, quando definimos nossas restrições, usaremos
AllDifferent, então precisamos de uma matriz em que todos os elementos precisam ser diferentes.
Por fim, verificamos que nossa base tem pelo menos o mesmo número de letras. caso contrário, não há solução.
Python
base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters)
C++
const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size());
Java
final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); }
C#
const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); }
Como definir as restrições
Agora que definimos nossas variáveis, a próxima etapa é definir as restrições.
Primeiro, adicionamos a restrição AllDifferent, forçando cada letra a ter uma
um dígito diferente.
Em seguida, adicionamos a restrição CP + IS + FUN = TRUE. Os programas de exemplo fazem isso
de maneiras diferentes.
Python
solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t )
C++
// Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum));
Java
solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2));
C#
solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);
Como invocar o solucionador
Agora que temos as variáveis e as restrições, estamos prontos para resolver.
O código da impressora da solução, que mostra cada solução como o solucionador o local onde ele é encontrado, é mostrado abaixo.
Como há mais de uma solução para o problema, repetimos as
soluções com uma repetição while solver.NextSolution(). Se estivéssemos apenas tentando
encontrar uma única solução, usaríamos esta expressão:\
if (solver.NextSolution()) {
// Print solution.
} else {
// Print that no solution could be found.
}Python
solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}")
C++
int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions;
Java
int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution);
C#
int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}");
Programas completos
Estes são os programas completos.
Python
"""Cryptarithmetic puzzle. First attempt to solve equation CP + IS + FUN = TRUE where each letter represents a unique digit. This problem has 72 different solutions in base 10. """ from ortools.constraint_solver import pywrapcp def main(): # Constraint programming engine solver = pywrapcp.Solver("CP is fun!") base = 10 # Decision variables. digits = list(range(0, base)) digits_without_zero = list(range(1, base)) c = solver.IntVar(digits_without_zero, "C") p = solver.IntVar(digits, "P") i = solver.IntVar(digits_without_zero, "I") s = solver.IntVar(digits, "S") f = solver.IntVar(digits_without_zero, "F") u = solver.IntVar(digits, "U") n = solver.IntVar(digits, "N") t = solver.IntVar(digits_without_zero, "T") r = solver.IntVar(digits, "R") e = solver.IntVar(digits, "E") # We need to group variables in a list to use the constraint AllDifferent. letters = [c, p, i, s, f, u, n, t, r, e] # Verify that we have enough digits. assert base >= len(letters) # Define constraints. solver.Add(solver.AllDifferent(letters)) # CP + IS + FUN = TRUE solver.Add( p + s + n + base * (c + i + u) + base * base * f == e + base * u + base * base * r + base * base * base * t ) solution_count = 0 db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT) solver.NewSearch(db) while solver.NextSolution(): print(letters) # Is CP + IS + FUN = TRUE? assert ( base * c.Value() + p.Value() + base * i.Value() + s.Value() + base * base * f.Value() + base * u.Value() + n.Value() == base * base * base * t.Value() + base * base * r.Value() + base * u.Value() + e.Value() ) solution_count += 1 solver.EndSearch() print(f"Number of solutions found: {solution_count}") if __name__ == "__main__": main()
C++
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. #include <cstdint> #include <vector> #include "absl/flags/flag.h" #include "absl/log/flags.h" #include "ortools/base/init_google.h" #include "ortools/base/logging.h" #include "ortools/constraint_solver/constraint_solver.h" namespace operations_research { // Helper functions. IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2, const int64_t base) { return s->MakeSum(s->MakeProd(v1, base), v2)->Var(); } IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base); tmp_vars.push_back(v2); coefficients.push_back(base); tmp_vars.push_back(v3); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2, IntVar* const v3, IntVar* const v4, const int64_t base) { std::vector<IntVar*> tmp_vars; std::vector<int64_t> coefficients; tmp_vars.push_back(v1); coefficients.push_back(base * base * base); tmp_vars.push_back(v2); coefficients.push_back(base * base); tmp_vars.push_back(v3); coefficients.push_back(base); tmp_vars.push_back(v4); coefficients.push_back(1); return s->MakeScalProd(tmp_vars, coefficients)->Var(); } void CPIsFunCp() { // Instantiate the solver. Solver solver("CP is fun!"); const int64_t kBase = 10; // Define decision variables. IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E"); // We need to group variables in a vector to be able to use // the global constraint AllDifferent std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e}; // Check if we have enough digits CHECK_GE(kBase, letters.size()); // Define constraints. solver.AddConstraint(solver.MakeAllDifferent(letters)); // CP + IS + FUN = TRUE IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase); IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase); IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase); IntVar* const sum_terms = solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var(); IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase); solver.AddConstraint(solver.MakeEquality(sum_terms, sum)); int num_solutions = 0; // Create decision builder to search for solutions. DecisionBuilder* const db = solver.MakePhase( letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " " << "I=" << i->Value() << " " << "S=" << s->Value() << " " << "F=" << f->Value() << " " << "U=" << u->Value() << " " << "N=" << n->Value() << " " << "T=" << t->Value() << " " << "R=" << r->Value() << " " << "E=" << e->Value(); // Is CP + IS + FUN = TRUE? CHECK_EQ(p->Value() + s->Value() + n->Value() + kBase * (c->Value() + i->Value() + u->Value()) + kBase * kBase * f->Value(), e->Value() + kBase * u->Value() + kBase * kBase * r->Value() + kBase * kBase * kBase * t->Value()); num_solutions++; } solver.EndSearch(); LOG(INFO) << "Number of solutions found: " << num_solutions; } } // namespace operations_research int main(int argc, char** argv) { InitGoogle(argv[0], &argc, &argv, true); absl::SetFlag(&FLAGS_stderrthreshold, 0); operations_research::CPIsFunCp(); return EXIT_SUCCESS; }
Java
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. package com.google.ortools.constraintsolver.samples; import com.google.ortools.Loader; import com.google.ortools.constraintsolver.DecisionBuilder; import com.google.ortools.constraintsolver.IntVar; import com.google.ortools.constraintsolver.Solver; /** Cryptarithmetic puzzle. */ public final class CpIsFunCp { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate the solver. Solver solver = new Solver("CP is fun!"); final int base = 10; // Decision variables. final IntVar c = solver.makeIntVar(1, base - 1, "C"); final IntVar p = solver.makeIntVar(0, base - 1, "P"); final IntVar i = solver.makeIntVar(1, base - 1, "I"); final IntVar s = solver.makeIntVar(0, base - 1, "S"); final IntVar f = solver.makeIntVar(1, base - 1, "F"); final IntVar u = solver.makeIntVar(0, base - 1, "U"); final IntVar n = solver.makeIntVar(0, base - 1, "N"); final IntVar t = solver.makeIntVar(1, base - 1, "T"); final IntVar r = solver.makeIntVar(0, base - 1, "R"); final IntVar e = solver.makeIntVar(0, base - 1, "E"); // Group variables in a vector so that we can use AllDifferent. final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e}; // Verify that we have enough digits. if (base < letters.length) { throw new Exception("base < letters.Length"); } // Define constraints. solver.addConstraint(solver.makeAllDifferent(letters)); // CP + IS + FUN = TRUE final IntVar sum1 = solver .makeSum(new IntVar[] {p, s, n, solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(), solver.makeProd(f, base * base).var()}) .var(); final IntVar sum2 = solver .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(), solver.makeProd(r, base * base).var(), solver.makeProd(t, base * base * base).var()}) .var(); solver.addConstraint(solver.makeEquality(sum1, sum2)); int countSolution = 0; // Create the decision builder to search for solutions. final DecisionBuilder db = solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.newSearch(db); while (solver.nextSolution()) { System.out.println("C=" + c.value() + " P=" + p.value()); System.out.println(" I=" + i.value() + " S=" + s.value()); System.out.println(" F=" + f.value() + " U=" + u.value()); System.out.println(" N=" + n.value() + " T=" + t.value()); System.out.println(" R=" + r.value() + " E=" + e.value()); // Is CP + IS + FUN = TRUE? if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value()) + base * base * f.value() != e.value() + base * u.value() + base * base * r.value() + base * base * base * t.value()) { throw new Exception("CP + IS + FUN != TRUE"); } countSolution++; } solver.endSearch(); System.out.println("Number of solutions found: " + countSolution); } private CpIsFunCp() {} }
C#
// Cryptarithmetic puzzle // // First attempt to solve equation CP + IS + FUN = TRUE // where each letter represents a unique digit. // // This problem has 72 different solutions in base 10. using System; using Google.OrTools.ConstraintSolver; public class CpIsFunCp { public static void Main(String[] args) { // Instantiate the solver. Solver solver = new Solver("CP is fun!"); const int kBase = 10; // Decision variables. IntVar c = solver.MakeIntVar(1, kBase - 1, "C"); IntVar p = solver.MakeIntVar(0, kBase - 1, "P"); IntVar i = solver.MakeIntVar(1, kBase - 1, "I"); IntVar s = solver.MakeIntVar(0, kBase - 1, "S"); IntVar f = solver.MakeIntVar(1, kBase - 1, "F"); IntVar u = solver.MakeIntVar(0, kBase - 1, "U"); IntVar n = solver.MakeIntVar(0, kBase - 1, "N"); IntVar t = solver.MakeIntVar(1, kBase - 1, "T"); IntVar r = solver.MakeIntVar(0, kBase - 1, "R"); IntVar e = solver.MakeIntVar(0, kBase - 1, "E"); // Group variables in a vector so that we can use AllDifferent. IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e }; // Verify that we have enough digits. if (kBase < letters.Length) { throw new Exception("kBase < letters.Length"); } // Define constraints. solver.Add(letters.AllDifferent()); // CP + IS + FUN = TRUE solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f == e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t); int SolutionCount = 0; // Create the decision builder to search for solutions. DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); solver.NewSearch(db); while (solver.NextSolution()) { Console.Write("C=" + c.Value() + " P=" + p.Value()); Console.Write(" I=" + i.Value() + " S=" + s.Value()); Console.Write(" F=" + f.Value() + " U=" + u.Value()); Console.Write(" N=" + n.Value() + " T=" + t.Value()); Console.Write(" R=" + r.Value() + " E=" + e.Value()); Console.WriteLine(); // Is CP + IS + FUN = TRUE? if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) + kBase * kBase * f.Value() != e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value()) { throw new Exception("CP + IS + FUN != TRUE"); } SolutionCount++; } solver.EndSearch(); Console.WriteLine($"Number of solutions found: {SolutionCount}"); } }