Kriptarithmetik Bulmacalar

Kriparitmetik bulmaca, bazı sayıların doğru girildiği bir matematik problemidir. sayılar harfler (veya simgeler) ile temsil edilir. Her harf benzersiz bir ile başlar. Amaç, belirli bir matematiksel denklemin doğrulandı:

      CP
+     IS
+    FUN
--------
=   TRUE

Harflerin rakamlara atanması aşağıdaki denklemi sağlar:

      23
+     74
+    968
--------
=   1065

Bu sorunun başka yanıtları da vardır. Tüm çözümleri nasıl bulacağınızı göstereceğiz.

Problemi modelleme

Herhangi bir optimizasyon probleminde olduğu gibi, önce değişkenleri belirler ve kısıtlar. Değişkenler, tek bir rakamı alabilen harflerdir değer.

CP + IS + EĞLENCE = DOĞRU için kısıtlamalar aşağıdaki gibidir:

  • Denklem: CP + IS + FUN = TRUE.
  • On harfin her biri farklı bir rakam olmalıdır.
  • C, I, F ve T sıfır olamaz (çünkü baştaki sıfırları sayılar).

Şifreli kod problemlerini yeni CP-SAT çözücüyü kullanarak çözebilirsiniz daha verimli olduğunu ya da orijinal CP çözücü olduğunu gösterir. CP-SAT ile başlayarak her iki çözücüyü kullanan örnekler göstereceğiz.

CP-SAT Çözümü

Değişkenleri, kısıtlamaları, çözücü çağrısını ve son olarak da bilgi edindiniz.

Kitaplıkları içe aktarma

Aşağıdaki kod, gerekli kitaplığı içe aktarır.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include <cstdint>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

C#

using System;
using Google.OrTools.Sat;

Modeli açıklama

Aşağıdaki kod, sorun için modeli tanımlar.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

        CpModel model = new CpModel();

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Define constraints.
        model.AddAllDifferent(letters);

        // CP + IS + FUN = TRUE
        model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
                  t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  branches  : {solver.NumBranches()}");
        Console.WriteLine($"  wall time : {solver.WallTime()} s");
        Console.WriteLine($"  number of solutions found: {cb.SolutionCount()}");
    }
}

Değişkenleri tanımlama

CP-SAT çözücüyü kullanırken, RACI matrisleri gibi bazı yardımcı tanımlar. Sayımızı (tam sayı) tanımlamak için bunlardan birini (NewIntVar) kullanırız. Potansiyel olarak sıfır olabilecek harfler ile yapılamaz (C, I, F ve T).

Python

base = 10

c = model.new_int_var(1, base - 1, "C")
p = model.new_int_var(0, base - 1, "P")
i = model.new_int_var(1, base - 1, "I")
s = model.new_int_var(0, base - 1, "S")
f = model.new_int_var(1, base - 1, "F")
u = model.new_int_var(0, base - 1, "U")
n = model.new_int_var(0, base - 1, "N")
t = model.new_int_var(1, base - 1, "T")
r = model.new_int_var(0, base - 1, "R")
e = model.new_int_var(0, base - 1, "E")

# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]

# Verify that we have enough digits.
assert base >= len(letters)

C++

const int64_t kBase = 10;

// Define decision variables.
Domain digit(0, kBase - 1);
Domain non_zero_digit(1, kBase - 1);

IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C");
IntVar p = cp_model.NewIntVar(digit).WithName("P");
IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I");
IntVar s = cp_model.NewIntVar(digit).WithName("S");
IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F");
IntVar u = cp_model.NewIntVar(digit).WithName("U");
IntVar n = cp_model.NewIntVar(digit).WithName("N");
IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T");
IntVar r = cp_model.NewIntVar(digit).WithName("R");
IntVar e = cp_model.NewIntVar(digit).WithName("E");

Java

int base = 10;
IntVar c = model.newIntVar(1, base - 1, "C");
IntVar p = model.newIntVar(0, base - 1, "P");
IntVar i = model.newIntVar(1, base - 1, "I");
IntVar s = model.newIntVar(0, base - 1, "S");
IntVar f = model.newIntVar(1, base - 1, "F");
IntVar u = model.newIntVar(0, base - 1, "U");
IntVar n = model.newIntVar(0, base - 1, "N");
IntVar t = model.newIntVar(1, base - 1, "T");
IntVar r = model.newIntVar(0, base - 1, "R");
IntVar e = model.newIntVar(0, base - 1, "E");

// We need to group variables in a list to use the constraint AllDifferent.
IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

C#

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

Kısıtlamaları tanımlama

Sonra da kısıtlamalara bakalım. İlk olarak, tüm harflerin farklı değerlere sahip olduğundan emin olun. AddAllDifferent yardımcı yöntemini kullanarak. Ardından AddEquality yardımcısını kullanırız. yöntemini kullanarak CP + IS + FUN = TRUE eşitliğini zorunlu kılar.

Python

model.add_all_different(letters)

# CP + IS + FUN = TRUE
model.add(
    c * base + p + i * base + s + f * base * base + u * base + n
    == t * base * base * base + r * base * base + u * base + e
)

C++

// Define constraints.
cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e});

// CP + IS + FUN = TRUE
cp_model.AddEquality(
    c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n,
    kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);

Java

model.addAllDifferent(letters);

// CP + IS + FUN = TRUE
model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
                      new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
                          -base * base, -base, -1}),
    0);

C#

// Define constraints.
model.AddAllDifferent(letters);

// CP + IS + FUN = TRUE
model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
          t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

Çözüm yazıcısı

Çözüm yazıcısının kodu (her çözümü çözücü olarak gösterir) aşağıda gösterilmiştir.

Python

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count 

C++

Model model;
int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) {
  LOG(INFO) << "Solution " << num_solutions;
  LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " "
            << "P=" << SolutionIntegerValue(response, p) << " "
            << "I=" << SolutionIntegerValue(response, i) << " "
            << "S=" << SolutionIntegerValue(response, s) << " "
            << "F=" << SolutionIntegerValue(response, f) << " "
            << "U=" << SolutionIntegerValue(response, u) << " "
            << "N=" << SolutionIntegerValue(response, n) << " "
            << "T=" << SolutionIntegerValue(response, t) << " "
            << "R=" << SolutionIntegerValue(response, r) << " "
            << "E=" << SolutionIntegerValue(response, e);
  num_solutions++;
}));

Java

static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
  public VarArraySolutionPrinter(IntVar[] variables) {
    variableArray = variables;
  }

  @Override
  public void onSolutionCallback() {
    for (IntVar v : variableArray) {
      System.out.printf("  %s = %d", v.getName(), value(v));
    }
    System.out.println();
    solutionCount++;
  }

  public int getSolutionCount() {
    return solutionCount;
  }

  private int solutionCount;
  private final IntVar[] variableArray;
}

C#

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            foreach (IntVar v in variables_)
            {
                Console.Write(String.Format("  {0}={1}", v.ToString(), Value(v)));
            }
            Console.WriteLine();
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

Çözücü çağırma

Son olarak sorunu çözüp çözümü gösteririz. Sihirli yer, operations_research::sat::SolveCpModel() yöntemidir.

Python

solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter(letters)
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Solve.
status = solver.solve(model, solution_printer)

C++

// Tell the solver to enumerate all solutions.
SatParameters parameters;
parameters.set_enumerate_all_solutions(true);
model.Add(NewSatParameters(parameters));

const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
LOG(INFO) << "Number of solutions found: " << num_solutions;

Java

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// And solve.
solver.solve(model, cb);

C#

// Creates a solver and solves the model.
CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
// Search for all solutions.
solver.StringParameters = "enumerate_all_solutions:true";
// And solve.
solver.Solve(model, cb);

Programı çalıştırdığınızda, her satırın bir çözüm olduğu şu çıkışı görüntüler:

C=2 P=3 I=7 S=4 F=9 U=6 N=8 T=1 R=0 E=5
C=2 P=4 I=7 S=3 F=9 U=6 N=8 T=1 R=0 E=5
C=2 P=5 I=7 S=3 F=9 U=4 N=8 T=1 R=0 E=6
C=2 P=8 I=7 S=3 F=9 U=4 N=5 T=1 R=0 E=6
C=2 P=8 I=7 S=3 F=9 U=6 N=4 T=1 R=0 E=5
C=3 P=7 I=6 S=2 F=9 U=8 N=5 T=1 R=0 E=4
C=6 P=7 I=3 S=2 F=9 U=8 N=5 T=1 R=0 E=4
C=6 P=5 I=3 S=2 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=5 I=6 S=2 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=8 I=6 S=4 F=9 U=2 N=5 T=1 R=0 E=7
C=3 P=7 I=6 S=5 F=9 U=8 N=2 T=1 R=0 E=4
C=3 P=8 I=6 S=5 F=9 U=2 N=4 T=1 R=0 E=7
C=3 P=5 I=6 S=4 F=9 U=2 N=8 T=1 R=0 E=7
C=3 P=4 I=6 S=5 F=9 U=2 N=8 T=1 R=0 E=7
C=3 P=2 I=6 S=5 F=9 U=8 N=7 T=1 R=0 E=4
C=3 P=4 I=6 S=8 F=9 U=2 N=5 T=1 R=0 E=7
C=3 P=2 I=6 S=7 F=9 U=8 N=5 T=1 R=0 E=4
C=3 P=5 I=6 S=8 F=9 U=2 N=4 T=1 R=0 E=7
C=3 P=5 I=6 S=7 F=9 U=8 N=2 T=1 R=0 E=4
C=2 P=5 I=7 S=6 F=9 U=8 N=3 T=1 R=0 E=4
C=2 P=5 I=7 S=8 F=9 U=4 N=3 T=1 R=0 E=6
C=2 P=6 I=7 S=5 F=9 U=8 N=3 T=1 R=0 E=4
C=2 P=4 I=7 S=8 F=9 U=6 N=3 T=1 R=0 E=5
C=2 P=3 I=7 S=8 F=9 U=6 N=4 T=1 R=0 E=5
C=2 P=8 I=7 S=5 F=9 U=4 N=3 T=1 R=0 E=6
C=2 P=8 I=7 S=4 F=9 U=6 N=3 T=1 R=0 E=5
C=2 P=6 I=7 S=3 F=9 U=8 N=5 T=1 R=0 E=4
C=2 P=5 I=7 S=3 F=9 U=8 N=6 T=1 R=0 E=4
C=2 P=3 I=7 S=5 F=9 U=4 N=8 T=1 R=0 E=6
C=2 P=3 I=7 S=5 F=9 U=8 N=6 T=1 R=0 E=4
C=2 P=3 I=7 S=6 F=9 U=8 N=5 T=1 R=0 E=4
C=2 P=3 I=7 S=8 F=9 U=4 N=5 T=1 R=0 E=6
C=4 P=3 I=5 S=8 F=9 U=2 N=6 T=1 R=0 E=7
C=5 P=3 I=4 S=8 F=9 U=2 N=6 T=1 R=0 E=7
C=6 P=2 I=3 S=7 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=3 I=2 S=6 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=3 I=2 S=8 F=9 U=4 N=5 T=1 R=0 E=6
C=6 P=4 I=3 S=8 F=9 U=2 N=5 T=1 R=0 E=7
C=5 P=3 I=4 S=6 F=9 U=2 N=8 T=1 R=0 E=7
C=4 P=3 I=5 S=6 F=9 U=2 N=8 T=1 R=0 E=7
C=5 P=6 I=4 S=3 F=9 U=2 N=8 T=1 R=0 E=7
C=7 P=4 I=2 S=3 F=9 U=6 N=8 T=1 R=0 E=5
C=7 P=3 I=2 S=4 F=9 U=6 N=8 T=1 R=0 E=5
C=6 P=2 I=3 S=5 F=9 U=8 N=7 T=1 R=0 E=4
C=7 P=3 I=2 S=5 F=9 U=4 N=8 T=1 R=0 E=6
C=6 P=4 I=3 S=5 F=9 U=2 N=8 T=1 R=0 E=7
C=6 P=5 I=3 S=4 F=9 U=2 N=8 T=1 R=0 E=7
C=7 P=5 I=2 S=3 F=9 U=4 N=8 T=1 R=0 E=6
C=4 P=6 I=5 S=3 F=9 U=2 N=8 T=1 R=0 E=7
C=6 P=5 I=3 S=8 F=9 U=2 N=4 T=1 R=0 E=7
C=6 P=5 I=3 S=7 F=9 U=8 N=2 T=1 R=0 E=4
C=7 P=5 I=2 S=8 F=9 U=4 N=3 T=1 R=0 E=6
C=7 P=5 I=2 S=6 F=9 U=8 N=3 T=1 R=0 E=4
C=5 P=8 I=4 S=6 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=8 I=5 S=6 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=8 I=5 S=3 F=9 U=2 N=6 T=1 R=0 E=7
C=5 P=8 I=4 S=3 F=9 U=2 N=6 T=1 R=0 E=7
C=7 P=8 I=2 S=3 F=9 U=4 N=5 T=1 R=0 E=6
C=7 P=8 I=2 S=3 F=9 U=6 N=4 T=1 R=0 E=5
C=7 P=8 I=2 S=4 F=9 U=6 N=3 T=1 R=0 E=5
C=7 P=8 I=2 S=5 F=9 U=4 N=3 T=1 R=0 E=6
C=6 P=8 I=3 S=5 F=9 U=2 N=4 T=1 R=0 E=7
C=6 P=8 I=3 S=4 F=9 U=2 N=5 T=1 R=0 E=7
C=6 P=7 I=3 S=5 F=9 U=8 N=2 T=1 R=0 E=4
C=7 P=6 I=2 S=5 F=9 U=8 N=3 T=1 R=0 E=4
C=7 P=3 I=2 S=5 F=9 U=8 N=6 T=1 R=0 E=4
C=7 P=4 I=2 S=8 F=9 U=6 N=3 T=1 R=0 E=5
C=7 P=3 I=2 S=8 F=9 U=6 N=4 T=1 R=0 E=5
C=5 P=6 I=4 S=8 F=9 U=2 N=3 T=1 R=0 E=7
C=4 P=6 I=5 S=8 F=9 U=2 N=3 T=1 R=0 E=7
C=7 P=6 I=2 S=3 F=9 U=8 N=5 T=1 R=0 E=4
C=7 P=5 I=2 S=3 F=9 U=8 N=6 T=1 R=0 E=4

Statistics
  - status          : OPTIMAL
  - conflicts       : 110
  - branches        : 435
  - wall time       : 0.014934 ms
  - solutions found : 72

Programları tamamlama

Programların tamamını burada bulabilirsiniz.

Python

"""Cryptarithmetic puzzle.

First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.

This problem has 72 different solutions in base 10.
"""
from ortools.sat.python import cp_model


class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count


def main() -> None:
    """solve the CP+IS+FUN==TRUE cryptarithm."""
    # Constraint programming engine
    model = cp_model.CpModel()

    base = 10

    c = model.new_int_var(1, base - 1, "C")
    p = model.new_int_var(0, base - 1, "P")
    i = model.new_int_var(1, base - 1, "I")
    s = model.new_int_var(0, base - 1, "S")
    f = model.new_int_var(1, base - 1, "F")
    u = model.new_int_var(0, base - 1, "U")
    n = model.new_int_var(0, base - 1, "N")
    t = model.new_int_var(1, base - 1, "T")
    r = model.new_int_var(0, base - 1, "R")
    e = model.new_int_var(0, base - 1, "E")

    # We need to group variables in a list to use the constraint AllDifferent.
    letters = [c, p, i, s, f, u, n, t, r, e]

    # Verify that we have enough digits.
    assert base >= len(letters)

    # Define constraints.
    model.add_all_different(letters)

    # CP + IS + FUN = TRUE
    model.add(
        c * base + p + i * base + s + f * base * base + u * base + n
        == t * base * base * base + r * base * base + u * base + e
    )

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    solution_printer = VarArraySolutionPrinter(letters)
    # Enumerate all solutions.
    solver.parameters.enumerate_all_solutions = True
    # Solve.
    status = solver.solve(model, solution_printer)

    # Statistics.
    print("\nStatistics")
    print(f"  status   : {solver.status_name(status)}")
    print(f"  conflicts: {solver.num_conflicts}")
    print(f"  branches : {solver.num_branches}")
    print(f"  wall time: {solver.wall_time} s")
    print(f"  sol found: {solution_printer.solution_count}")


if __name__ == "__main__":
    main()

C++

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
#include <stdlib.h>

#include <cstdint>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void CPIsFunSat() {
  // Instantiate the solver.
  CpModelBuilder cp_model;

  const int64_t kBase = 10;

  // Define decision variables.
  Domain digit(0, kBase - 1);
  Domain non_zero_digit(1, kBase - 1);

  IntVar c = cp_model.NewIntVar(non_zero_digit).WithName("C");
  IntVar p = cp_model.NewIntVar(digit).WithName("P");
  IntVar i = cp_model.NewIntVar(non_zero_digit).WithName("I");
  IntVar s = cp_model.NewIntVar(digit).WithName("S");
  IntVar f = cp_model.NewIntVar(non_zero_digit).WithName("F");
  IntVar u = cp_model.NewIntVar(digit).WithName("U");
  IntVar n = cp_model.NewIntVar(digit).WithName("N");
  IntVar t = cp_model.NewIntVar(non_zero_digit).WithName("T");
  IntVar r = cp_model.NewIntVar(digit).WithName("R");
  IntVar e = cp_model.NewIntVar(digit).WithName("E");

  // Define constraints.
  cp_model.AddAllDifferent({c, p, i, s, f, u, n, t, r, e});

  // CP + IS + FUN = TRUE
  cp_model.AddEquality(
      c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n,
      kBase * kBase * kBase * t + kBase * kBase * r + kBase * u + e);

  Model model;
  int num_solutions = 0;
  model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& response) {
    LOG(INFO) << "Solution " << num_solutions;
    LOG(INFO) << "C=" << SolutionIntegerValue(response, c) << " "
              << "P=" << SolutionIntegerValue(response, p) << " "
              << "I=" << SolutionIntegerValue(response, i) << " "
              << "S=" << SolutionIntegerValue(response, s) << " "
              << "F=" << SolutionIntegerValue(response, f) << " "
              << "U=" << SolutionIntegerValue(response, u) << " "
              << "N=" << SolutionIntegerValue(response, n) << " "
              << "T=" << SolutionIntegerValue(response, t) << " "
              << "R=" << SolutionIntegerValue(response, r) << " "
              << "E=" << SolutionIntegerValue(response, e);
    num_solutions++;
  }));

  // Tell the solver to enumerate all solutions.
  SatParameters parameters;
  parameters.set_enumerate_all_solutions(true);
  model.Add(NewSatParameters(parameters));

  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);
  LOG(INFO) << "Number of solutions found: " << num_solutions;

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::sat::CPIsFunSat();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

/** Cryptarithmetic puzzle. */
public final class CpIsFunSat {
  static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
    public VarArraySolutionPrinter(IntVar[] variables) {
      variableArray = variables;
    }

    @Override
    public void onSolutionCallback() {
      for (IntVar v : variableArray) {
        System.out.printf("  %s = %d", v.getName(), value(v));
      }
      System.out.println();
      solutionCount++;
    }

    public int getSolutionCount() {
      return solutionCount;
    }

    private int solutionCount;
    private final IntVar[] variableArray;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    int base = 10;
    IntVar c = model.newIntVar(1, base - 1, "C");
    IntVar p = model.newIntVar(0, base - 1, "P");
    IntVar i = model.newIntVar(1, base - 1, "I");
    IntVar s = model.newIntVar(0, base - 1, "S");
    IntVar f = model.newIntVar(1, base - 1, "F");
    IntVar u = model.newIntVar(0, base - 1, "U");
    IntVar n = model.newIntVar(0, base - 1, "N");
    IntVar t = model.newIntVar(1, base - 1, "T");
    IntVar r = model.newIntVar(0, base - 1, "R");
    IntVar e = model.newIntVar(0, base - 1, "E");

    // We need to group variables in a list to use the constraint AllDifferent.
    IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

    // Define constraints.
    model.addAllDifferent(letters);

    // CP + IS + FUN = TRUE
    model.addEquality(LinearExpr.weightedSum(new IntVar[] {c, p, i, s, f, u, n, t, r, u, e},
                          new long[] {base, 1, base, 1, base * base, base, 1, -base * base * base,
                              -base * base, -base, -1}),
        0);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
    // Tell the solver to enumerate all solutions.
    solver.getParameters().setEnumerateAllSolutions(true);
    // And solve.
    solver.solve(model, cb);

    // Statistics.
    System.out.println("Statistics");
    System.out.println("  - conflicts : " + solver.numConflicts());
    System.out.println("  - branches  : " + solver.numBranches());
    System.out.println("  - wall time : " + solver.wallTime() + " s");
    System.out.println("  - solutions : " + cb.getSolutionCount());
  }

  private CpIsFunSat() {}
}

C#

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
using System;
using Google.OrTools.Sat;

public class CpIsFunSat
{
    public class VarArraySolutionPrinter : CpSolverSolutionCallback
    {
        public VarArraySolutionPrinter(IntVar[] variables)
        {
            variables_ = variables;
        }

        public override void OnSolutionCallback()
        {
            {
                foreach (IntVar v in variables_)
                {
                    Console.Write(String.Format("  {0}={1}", v.ToString(), Value(v)));
                }
                Console.WriteLine();
                solution_count_++;
            }
        }

        public int SolutionCount()
        {
            return solution_count_;
        }

        private int solution_count_;
        private IntVar[] variables_;
    }

    // Solve the CP+IS+FUN==TRUE cryptarithm.
    static void Main()
    {
        // Constraint programming engine
        CpModel model = new CpModel();

        int kBase = 10;

        IntVar c = model.NewIntVar(1, kBase - 1, "C");
        IntVar p = model.NewIntVar(0, kBase - 1, "P");
        IntVar i = model.NewIntVar(1, kBase - 1, "I");
        IntVar s = model.NewIntVar(0, kBase - 1, "S");
        IntVar f = model.NewIntVar(1, kBase - 1, "F");
        IntVar u = model.NewIntVar(0, kBase - 1, "U");
        IntVar n = model.NewIntVar(0, kBase - 1, "N");
        IntVar t = model.NewIntVar(1, kBase - 1, "T");
        IntVar r = model.NewIntVar(0, kBase - 1, "R");
        IntVar e = model.NewIntVar(0, kBase - 1, "E");

        // We need to group variables in a list to use the constraint AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Define constraints.
        model.AddAllDifferent(letters);

        // CP + IS + FUN = TRUE
        model.Add(c * kBase + p + i * kBase + s + f * kBase * kBase + u * kBase + n ==
                  t * kBase * kBase * kBase + r * kBase * kBase + u * kBase + e);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(letters);
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts : {solver.NumConflicts()}");
        Console.WriteLine($"  branches  : {solver.NumBranches()}");
        Console.WriteLine($"  wall time : {solver.WallTime()} s");
        Console.WriteLine($"  number of solutions found: {cb.SolutionCount()}");
    }
}

Orijinal CP Çözümü

Bu örnekte, tabanı değişken olarak ele alacağız. Böylece denklemi çözebilmeniz için bir strateji geliştirin. (Bir hedefin maliyetinin daha düşük On harfin hepsi farklı olması gerektiğinden CP + IS + FUN = TRUE.)

Kitaplıkları içe aktarma

Aşağıdaki kod, gerekli kitaplığı içe aktarır.

Python

from ortools.constraint_solver import pywrapcp

C++

#include <cstdint>
#include <vector>

#include "absl/flags/flag.h"
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"

Java

C#

using System;
using Google.OrTools.ConstraintSolver;

Çözücü oluşturma

İlk adım, Solver oluşturmaktır.

Python

solver = pywrapcp.Solver("CP is fun!")

C++

Solver solver("CP is fun!");

Java

Solver solver = new Solver("CP is fun!");

C#

Solver solver = new Solver("CP is fun!");

Değişkenleri tanımlama

İlk adım, her harf için bir IntVar oluşturmaktır. Proje yöneticileri olabilen ve sıfır olabilen harfler (C, I, F, ve T).

Daha sonra, her harf için yeni bir IntVar içeren bir dizi oluşturuyoruz. Bu yalnızca çünkü kendi kısıtlamalarımızı tanımlarken AllDifferent için her öğenin farklı olması gereken bir diziye ihtiyacımız var.

Son olarak, tabanımızın en az harf sayısı kadar olduğunu doğrularız; Aksi takdirde hiçbir çözüm yoktur.

Python

base = 10

# Decision variables.
digits = list(range(0, base))
digits_without_zero = list(range(1, base))
c = solver.IntVar(digits_without_zero, "C")
p = solver.IntVar(digits, "P")
i = solver.IntVar(digits_without_zero, "I")
s = solver.IntVar(digits, "S")
f = solver.IntVar(digits_without_zero, "F")
u = solver.IntVar(digits, "U")
n = solver.IntVar(digits, "N")
t = solver.IntVar(digits_without_zero, "T")
r = solver.IntVar(digits, "R")
e = solver.IntVar(digits, "E")

# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]

# Verify that we have enough digits.
assert base >= len(letters)

C++

const int64_t kBase = 10;

// Define decision variables.
IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C");
IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P");
IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I");
IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S");
IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F");
IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U");
IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N");
IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T");
IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R");
IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E");

// We need to group variables in a vector to be able to use
// the global constraint AllDifferent
std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e};

// Check if we have enough digits
CHECK_GE(kBase, letters.size());

Java

final int base = 10;

// Decision variables.
final IntVar c = solver.makeIntVar(1, base - 1, "C");
final IntVar p = solver.makeIntVar(0, base - 1, "P");
final IntVar i = solver.makeIntVar(1, base - 1, "I");
final IntVar s = solver.makeIntVar(0, base - 1, "S");
final IntVar f = solver.makeIntVar(1, base - 1, "F");
final IntVar u = solver.makeIntVar(0, base - 1, "U");
final IntVar n = solver.makeIntVar(0, base - 1, "N");
final IntVar t = solver.makeIntVar(1, base - 1, "T");
final IntVar r = solver.makeIntVar(0, base - 1, "R");
final IntVar e = solver.makeIntVar(0, base - 1, "E");

// Group variables in a vector so that we can use AllDifferent.
final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

// Verify that we have enough digits.
if (base < letters.length) {
  throw new Exception("base < letters.Length");
}

C#

const int kBase = 10;

// Decision variables.
IntVar c = solver.MakeIntVar(1, kBase - 1, "C");
IntVar p = solver.MakeIntVar(0, kBase - 1, "P");
IntVar i = solver.MakeIntVar(1, kBase - 1, "I");
IntVar s = solver.MakeIntVar(0, kBase - 1, "S");
IntVar f = solver.MakeIntVar(1, kBase - 1, "F");
IntVar u = solver.MakeIntVar(0, kBase - 1, "U");
IntVar n = solver.MakeIntVar(0, kBase - 1, "N");
IntVar t = solver.MakeIntVar(1, kBase - 1, "T");
IntVar r = solver.MakeIntVar(0, kBase - 1, "R");
IntVar e = solver.MakeIntVar(0, kBase - 1, "E");

// Group variables in a vector so that we can use AllDifferent.
IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

// Verify that we have enough digits.
if (kBase < letters.Length)
{
    throw new Exception("kBase < letters.Length");
}

Kısıtlamaları tanımlama

Değişkenlerimizi tanımladığımıza göre bir sonraki adım kısıtlamaları tanımlamaktır. İlk olarak AllDifferent kısıtlamasını ekleriz ve her harfini bir farklı bir basamak.

Sonra, CP + IS + FUN = TRUE kısıtlamasını ekleriz. Örnek programlar bunu yapar: şekillerde kullanabilirsiniz.

Python

solver.Add(solver.AllDifferent(letters))

# CP + IS + FUN = TRUE
solver.Add(
    p + s + n + base * (c + i + u) + base * base * f
    == e + base * u + base * base * r + base * base * base * t
)

C++

// Define constraints.
solver.AddConstraint(solver.MakeAllDifferent(letters));

// CP + IS + FUN = TRUE
IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase);
IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase);
IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase);
IntVar* const sum_terms =
    solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var();

IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase);

solver.AddConstraint(solver.MakeEquality(sum_terms, sum));

Java

solver.addConstraint(solver.makeAllDifferent(letters));

// CP + IS + FUN = TRUE
final IntVar sum1 =
    solver
        .makeSum(new IntVar[] {p, s, n,
            solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(),
            solver.makeProd(f, base * base).var()})
        .var();
final IntVar sum2 = solver
                        .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(),
                            solver.makeProd(r, base * base).var(),
                            solver.makeProd(t, base * base * base).var()})
                        .var();
solver.addConstraint(solver.makeEquality(sum1, sum2));

C#

solver.Add(letters.AllDifferent());

// CP + IS + FUN = TRUE
solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
           e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);

Çözücü çağırma

Artık değişkenlerimiz ve kısıtlamalarımız olduğuna göre sorunu çözmeye hazırız.

Çözüm yazıcısının kodu (her çözümü çözücü olarak gösterir) aşağıda gösterilmiştir.

Sorunumuzun birden çok çözümü olduğundan, çözüm bulmak için while solver.NextSolution() döngülü çözümler. Örneğin, tek bir çözüm bulursak şu deyimi kullanırız:\

if (solver.NextSolution()) {
    // Print solution.
} else {
    // Print that no solution could be found.
}

Python

solution_count = 0
db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT)
solver.NewSearch(db)
while solver.NextSolution():
    print(letters)
    # Is CP + IS + FUN = TRUE?
    assert (
        base * c.Value()
        + p.Value()
        + base * i.Value()
        + s.Value()
        + base * base * f.Value()
        + base * u.Value()
        + n.Value()
        == base * base * base * t.Value()
        + base * base * r.Value()
        + base * u.Value()
        + e.Value()
    )
    solution_count += 1
solver.EndSearch()
print(f"Number of solutions found: {solution_count}")

C++

int num_solutions = 0;
// Create decision builder to search for solutions.
DecisionBuilder* const db = solver.MakePhase(
    letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution()) {
  LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " "
            << "I=" << i->Value() << " " << "S=" << s->Value() << " "
            << "F=" << f->Value() << " " << "U=" << u->Value() << " "
            << "N=" << n->Value() << " " << "T=" << t->Value() << " "
            << "R=" << r->Value() << " " << "E=" << e->Value();

  // Is CP + IS + FUN = TRUE?
  CHECK_EQ(p->Value() + s->Value() + n->Value() +
               kBase * (c->Value() + i->Value() + u->Value()) +
               kBase * kBase * f->Value(),
           e->Value() + kBase * u->Value() + kBase * kBase * r->Value() +
               kBase * kBase * kBase * t->Value());
  num_solutions++;
}
solver.EndSearch();
LOG(INFO) << "Number of solutions found: " << num_solutions;

Java

int countSolution = 0;
// Create the decision builder to search for solutions.
final DecisionBuilder db =
    solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.newSearch(db);
while (solver.nextSolution()) {
  System.out.println("C=" + c.value() + " P=" + p.value());
  System.out.println(" I=" + i.value() + " S=" + s.value());
  System.out.println(" F=" + f.value() + " U=" + u.value());
  System.out.println(" N=" + n.value() + " T=" + t.value());
  System.out.println(" R=" + r.value() + " E=" + e.value());

  // Is CP + IS + FUN = TRUE?
  if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value())
          + base * base * f.value()
      != e.value() + base * u.value() + base * base * r.value()
          + base * base * base * t.value()) {
    throw new Exception("CP + IS + FUN != TRUE");
  }
  countSolution++;
}
solver.endSearch();
System.out.println("Number of solutions found: " + countSolution);

C#

int SolutionCount = 0;
// Create the decision builder to search for solutions.
DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
solver.NewSearch(db);
while (solver.NextSolution())
{
    Console.Write("C=" + c.Value() + " P=" + p.Value());
    Console.Write(" I=" + i.Value() + " S=" + s.Value());
    Console.Write(" F=" + f.Value() + " U=" + u.Value());
    Console.Write(" N=" + n.Value() + " T=" + t.Value());
    Console.Write(" R=" + r.Value() + " E=" + e.Value());
    Console.WriteLine();

    // Is CP + IS + FUN = TRUE?
    if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) +
            kBase * kBase * f.Value() !=
        e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value())
    {
        throw new Exception("CP + IS + FUN != TRUE");
    }
    SolutionCount++;
}
solver.EndSearch();
Console.WriteLine($"Number of solutions found: {SolutionCount}");

Programları tamamlama

Programların tamamını burada bulabilirsiniz.

Python

"""Cryptarithmetic puzzle.

First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.

This problem has 72 different solutions in base 10.
"""
from ortools.constraint_solver import pywrapcp


def main():
    # Constraint programming engine
    solver = pywrapcp.Solver("CP is fun!")

    base = 10

    # Decision variables.
    digits = list(range(0, base))
    digits_without_zero = list(range(1, base))
    c = solver.IntVar(digits_without_zero, "C")
    p = solver.IntVar(digits, "P")
    i = solver.IntVar(digits_without_zero, "I")
    s = solver.IntVar(digits, "S")
    f = solver.IntVar(digits_without_zero, "F")
    u = solver.IntVar(digits, "U")
    n = solver.IntVar(digits, "N")
    t = solver.IntVar(digits_without_zero, "T")
    r = solver.IntVar(digits, "R")
    e = solver.IntVar(digits, "E")

    # We need to group variables in a list to use the constraint AllDifferent.
    letters = [c, p, i, s, f, u, n, t, r, e]

    # Verify that we have enough digits.
    assert base >= len(letters)

    # Define constraints.
    solver.Add(solver.AllDifferent(letters))

    # CP + IS + FUN = TRUE
    solver.Add(
        p + s + n + base * (c + i + u) + base * base * f
        == e + base * u + base * base * r + base * base * base * t
    )

    solution_count = 0
    db = solver.Phase(letters, solver.INT_VAR_DEFAULT, solver.INT_VALUE_DEFAULT)
    solver.NewSearch(db)
    while solver.NextSolution():
        print(letters)
        # Is CP + IS + FUN = TRUE?
        assert (
            base * c.Value()
            + p.Value()
            + base * i.Value()
            + s.Value()
            + base * base * f.Value()
            + base * u.Value()
            + n.Value()
            == base * base * base * t.Value()
            + base * base * r.Value()
            + base * u.Value()
            + e.Value()
        )
        solution_count += 1
    solver.EndSearch()
    print(f"Number of solutions found: {solution_count}")


if __name__ == "__main__":
    main()

C++

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
#include <cstdint>
#include <vector>

#include "absl/flags/flag.h"
#include "absl/log/flags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/constraint_solver/constraint_solver.h"

namespace operations_research {

// Helper functions.
IntVar* MakeBaseLine2(Solver* s, IntVar* const v1, IntVar* const v2,
                      const int64_t base) {
  return s->MakeSum(s->MakeProd(v1, base), v2)->Var();
}

IntVar* MakeBaseLine3(Solver* s, IntVar* const v1, IntVar* const v2,
                      IntVar* const v3, const int64_t base) {
  std::vector<IntVar*> tmp_vars;
  std::vector<int64_t> coefficients;
  tmp_vars.push_back(v1);
  coefficients.push_back(base * base);
  tmp_vars.push_back(v2);
  coefficients.push_back(base);
  tmp_vars.push_back(v3);
  coefficients.push_back(1);

  return s->MakeScalProd(tmp_vars, coefficients)->Var();
}

IntVar* MakeBaseLine4(Solver* s, IntVar* const v1, IntVar* const v2,
                      IntVar* const v3, IntVar* const v4, const int64_t base) {
  std::vector<IntVar*> tmp_vars;
  std::vector<int64_t> coefficients;
  tmp_vars.push_back(v1);
  coefficients.push_back(base * base * base);
  tmp_vars.push_back(v2);
  coefficients.push_back(base * base);
  tmp_vars.push_back(v3);
  coefficients.push_back(base);
  tmp_vars.push_back(v4);
  coefficients.push_back(1);

  return s->MakeScalProd(tmp_vars, coefficients)->Var();
}

void CPIsFunCp() {
  // Instantiate the solver.
  Solver solver("CP is fun!");

  const int64_t kBase = 10;

  // Define decision variables.
  IntVar* const c = solver.MakeIntVar(1, kBase - 1, "C");
  IntVar* const p = solver.MakeIntVar(0, kBase - 1, "P");
  IntVar* const i = solver.MakeIntVar(1, kBase - 1, "I");
  IntVar* const s = solver.MakeIntVar(0, kBase - 1, "S");
  IntVar* const f = solver.MakeIntVar(1, kBase - 1, "F");
  IntVar* const u = solver.MakeIntVar(0, kBase - 1, "U");
  IntVar* const n = solver.MakeIntVar(0, kBase - 1, "N");
  IntVar* const t = solver.MakeIntVar(1, kBase - 1, "T");
  IntVar* const r = solver.MakeIntVar(0, kBase - 1, "R");
  IntVar* const e = solver.MakeIntVar(0, kBase - 1, "E");

  // We need to group variables in a vector to be able to use
  // the global constraint AllDifferent
  std::vector<IntVar*> letters{c, p, i, s, f, u, n, t, r, e};

  // Check if we have enough digits
  CHECK_GE(kBase, letters.size());

  // Define constraints.
  solver.AddConstraint(solver.MakeAllDifferent(letters));

  // CP + IS + FUN = TRUE
  IntVar* const term1 = MakeBaseLine2(&solver, c, p, kBase);
  IntVar* const term2 = MakeBaseLine2(&solver, i, s, kBase);
  IntVar* const term3 = MakeBaseLine3(&solver, f, u, n, kBase);
  IntVar* const sum_terms =
      solver.MakeSum(solver.MakeSum(term1, term2), term3)->Var();

  IntVar* const sum = MakeBaseLine4(&solver, t, r, u, e, kBase);

  solver.AddConstraint(solver.MakeEquality(sum_terms, sum));

  int num_solutions = 0;
  // Create decision builder to search for solutions.
  DecisionBuilder* const db = solver.MakePhase(
      letters, Solver::CHOOSE_FIRST_UNBOUND, Solver::ASSIGN_MIN_VALUE);
  solver.NewSearch(db);
  while (solver.NextSolution()) {
    LOG(INFO) << "C=" << c->Value() << " " << "P=" << p->Value() << " "
              << "I=" << i->Value() << " " << "S=" << s->Value() << " "
              << "F=" << f->Value() << " " << "U=" << u->Value() << " "
              << "N=" << n->Value() << " " << "T=" << t->Value() << " "
              << "R=" << r->Value() << " " << "E=" << e->Value();

    // Is CP + IS + FUN = TRUE?
    CHECK_EQ(p->Value() + s->Value() + n->Value() +
                 kBase * (c->Value() + i->Value() + u->Value()) +
                 kBase * kBase * f->Value(),
             e->Value() + kBase * u->Value() + kBase * kBase * r->Value() +
                 kBase * kBase * kBase * t->Value());
    num_solutions++;
  }
  solver.EndSearch();
  LOG(INFO) << "Number of solutions found: " << num_solutions;
}

}  // namespace operations_research

int main(int argc, char** argv) {
  InitGoogle(argv[0], &argc, &argv, true);
  absl::SetFlag(&FLAGS_stderrthreshold, 0);
  operations_research::CPIsFunCp();
  return EXIT_SUCCESS;
}

Java

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
package com.google.ortools.constraintsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.constraintsolver.DecisionBuilder;
import com.google.ortools.constraintsolver.IntVar;
import com.google.ortools.constraintsolver.Solver;

/** Cryptarithmetic puzzle. */
public final class CpIsFunCp {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate the solver.
    Solver solver = new Solver("CP is fun!");

    final int base = 10;

    // Decision variables.
    final IntVar c = solver.makeIntVar(1, base - 1, "C");
    final IntVar p = solver.makeIntVar(0, base - 1, "P");
    final IntVar i = solver.makeIntVar(1, base - 1, "I");
    final IntVar s = solver.makeIntVar(0, base - 1, "S");
    final IntVar f = solver.makeIntVar(1, base - 1, "F");
    final IntVar u = solver.makeIntVar(0, base - 1, "U");
    final IntVar n = solver.makeIntVar(0, base - 1, "N");
    final IntVar t = solver.makeIntVar(1, base - 1, "T");
    final IntVar r = solver.makeIntVar(0, base - 1, "R");
    final IntVar e = solver.makeIntVar(0, base - 1, "E");

    // Group variables in a vector so that we can use AllDifferent.
    final IntVar[] letters = new IntVar[] {c, p, i, s, f, u, n, t, r, e};

    // Verify that we have enough digits.
    if (base < letters.length) {
      throw new Exception("base < letters.Length");
    }

    // Define constraints.
    solver.addConstraint(solver.makeAllDifferent(letters));

    // CP + IS + FUN = TRUE
    final IntVar sum1 =
        solver
            .makeSum(new IntVar[] {p, s, n,
                solver.makeProd(solver.makeSum(new IntVar[] {c, i, u}).var(), base).var(),
                solver.makeProd(f, base * base).var()})
            .var();
    final IntVar sum2 = solver
                            .makeSum(new IntVar[] {e, solver.makeProd(u, base).var(),
                                solver.makeProd(r, base * base).var(),
                                solver.makeProd(t, base * base * base).var()})
                            .var();
    solver.addConstraint(solver.makeEquality(sum1, sum2));

    int countSolution = 0;
    // Create the decision builder to search for solutions.
    final DecisionBuilder db =
        solver.makePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
    solver.newSearch(db);
    while (solver.nextSolution()) {
      System.out.println("C=" + c.value() + " P=" + p.value());
      System.out.println(" I=" + i.value() + " S=" + s.value());
      System.out.println(" F=" + f.value() + " U=" + u.value());
      System.out.println(" N=" + n.value() + " T=" + t.value());
      System.out.println(" R=" + r.value() + " E=" + e.value());

      // Is CP + IS + FUN = TRUE?
      if (p.value() + s.value() + n.value() + base * (c.value() + i.value() + u.value())
              + base * base * f.value()
          != e.value() + base * u.value() + base * base * r.value()
              + base * base * base * t.value()) {
        throw new Exception("CP + IS + FUN != TRUE");
      }
      countSolution++;
    }
    solver.endSearch();
    System.out.println("Number of solutions found: " + countSolution);
  }

  private CpIsFunCp() {}
}

C#

// Cryptarithmetic puzzle
//
// First attempt to solve equation CP + IS + FUN = TRUE
// where each letter represents a unique digit.
//
// This problem has 72 different solutions in base 10.
using System;
using Google.OrTools.ConstraintSolver;

public class CpIsFunCp
{
    public static void Main(String[] args)
    {
        // Instantiate the solver.
        Solver solver = new Solver("CP is fun!");

        const int kBase = 10;

        // Decision variables.
        IntVar c = solver.MakeIntVar(1, kBase - 1, "C");
        IntVar p = solver.MakeIntVar(0, kBase - 1, "P");
        IntVar i = solver.MakeIntVar(1, kBase - 1, "I");
        IntVar s = solver.MakeIntVar(0, kBase - 1, "S");
        IntVar f = solver.MakeIntVar(1, kBase - 1, "F");
        IntVar u = solver.MakeIntVar(0, kBase - 1, "U");
        IntVar n = solver.MakeIntVar(0, kBase - 1, "N");
        IntVar t = solver.MakeIntVar(1, kBase - 1, "T");
        IntVar r = solver.MakeIntVar(0, kBase - 1, "R");
        IntVar e = solver.MakeIntVar(0, kBase - 1, "E");

        // Group variables in a vector so that we can use AllDifferent.
        IntVar[] letters = new IntVar[] { c, p, i, s, f, u, n, t, r, e };

        // Verify that we have enough digits.
        if (kBase < letters.Length)
        {
            throw new Exception("kBase < letters.Length");
        }

        // Define constraints.
        solver.Add(letters.AllDifferent());

        // CP + IS + FUN = TRUE
        solver.Add(p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
                   e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t);

        int SolutionCount = 0;
        // Create the decision builder to search for solutions.
        DecisionBuilder db = solver.MakePhase(letters, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE);
        solver.NewSearch(db);
        while (solver.NextSolution())
        {
            Console.Write("C=" + c.Value() + " P=" + p.Value());
            Console.Write(" I=" + i.Value() + " S=" + s.Value());
            Console.Write(" F=" + f.Value() + " U=" + u.Value());
            Console.Write(" N=" + n.Value() + " T=" + t.Value());
            Console.Write(" R=" + r.Value() + " E=" + e.Value());
            Console.WriteLine();

            // Is CP + IS + FUN = TRUE?
            if (p.Value() + s.Value() + n.Value() + kBase * (c.Value() + i.Value() + u.Value()) +
                    kBase * kBase * f.Value() !=
                e.Value() + kBase * u.Value() + kBase * kBase * r.Value() + kBase * kBase * kBase * t.Value())
            {
                throw new Exception("CP + IS + FUN != TRUE");
            }
            SolutionCount++;
        }
        solver.EndSearch();
        Console.WriteLine($"Number of solutions found: {SolutionCount}");
    }
}