Resolver un problema de PC

En la sección anterior, se mostró cómo encontrar todas las soluciones a un problema de CP. Luego, te mostraremos cómo encontrar una solución óptima. Como ejemplo, resolveremos la siguiente problema de optimización.

Maximiza 2x + 2y + 3z sujeto a las siguientes restricciones:
x + 72 y + 32 z25
3x - 5y + 7z45
5x + 2y - 6z37
x, y y z0
Números enteros x, y, z

Para aumentar la velocidad de procesamiento, el solucionador de problemas CP-SAT trabaja en la en números enteros. Esto significa que todas las restricciones y el objetivo deben tener valores coeficientes del sistema. En el ejemplo anterior, la primera restricción no cumple con esta estado. Para resolver el problema, primero debes transformar la restricción por multiplicado por un número entero lo suficientemente grande para convertir todos los coeficientes en números enteros. Esto se muestra en la sección Restricciones a continuación.

Solución que usa el solucionador de problemas de CP-SAT

En las siguientes secciones, se presenta un programa de Python que resuelve el problema mediante el solucionador de problemas CP-SAT.

Importa las bibliotecas

Con el siguiente código, se importa la biblioteca requerida.

Python

from ortools.sat.python import cp_model

C++

#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

Java

import static java.util.Arrays.stream;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

C#

using System;
using System.Linq;
using Google.OrTools.Sat;

Declara el modelo

El siguiente código declara el modelo del problema.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Crea las variables

Con el siguiente código, se crean las variables para el problema.

Python

var_upper_bound = max(50, 45, 37)
x = model.new_int_var(0, var_upper_bound, "x")
y = model.new_int_var(0, var_upper_bound, "y")
z = model.new_int_var(0, var_upper_bound, "z")

C++

int64_t var_upper_bound = std::max({50, 45, 37});
const Domain domain(0, var_upper_bound);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");

Java

int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();

IntVar x = model.newIntVar(0, varUpperBound, "x");
IntVar y = model.newIntVar(0, varUpperBound, "y");
IntVar z = model.newIntVar(0, varUpperBound, "z");

C#

int varUpperBound = new int[] { 50, 45, 37 }.Max();

IntVar x = model.NewIntVar(0, varUpperBound, "x");
IntVar y = model.NewIntVar(0, varUpperBound, "y");
IntVar z = model.NewIntVar(0, varUpperBound, "z");

Define las restricciones

Dado que la primera restricción,

x + 72 y + 32 z25

tiene coeficientes que no son números enteros, primero debes multiplicar toda la restricción por un número entero lo suficientemente grande para convertir los coeficientes en números enteros. En este caso, , puedes multiplicar por 2, lo que da como resultado la nueva restricción

2x + 7y + 3z50

Esto no cambia el problema, ya que la restricción original tiene exactamente el las mismas soluciones que la restricción transformada.

El siguiente código define las tres restricciones lineales para el problema:

Python

model.add(2 * x + 7 * y + 3 * z <= 50)
model.add(3 * x - 5 * y + 7 * z <= 45)
model.add(5 * x + 2 * y - 6 * z <= 37)

C++

cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50);
cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45);
cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);

Java

model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);

C#

model.Add(2 * x + 7 * y + 3 * z <= 50);
model.Add(3 * x - 5 * y + 7 * z <= 45);
model.Add(5 * x + 2 * y - 6 * z <= 37);

Define la función objetiva

El siguiente código define la función objetiva para el problema y declara como un problema de maximización:

Python

model.maximize(2 * x + 2 * y + 3 * z)

C++

cp_model.Maximize(2 * x + 2 * y + 3 * z);

Java

model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));

C#

model.Maximize(2 * x + 2 * y + 3 * z);

Llamar a la herramienta de resolución

El siguiente código llama al solucionador.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

Muestra la solución

En el siguiente código, se muestran los resultados.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"Maximum of objective function: {solver.objective_value}\n")
    print(f"x = {solver.value(x)}")
    print(f"y = {solver.value(y)}")
    print(f"z = {solver.value(z)}")
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  // Get the value of x in the solution.
  LOG(INFO) << "Maximum of objective function: "
            << response.objective_value();
  LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
  LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
  LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
  System.out.println("x = " + solver.value(x));
  System.out.println("y = " + solver.value(y));
  System.out.println("z = " + solver.value(z));
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}");
    Console.WriteLine("x = " + solver.Value(x));
    Console.WriteLine("y = " + solver.Value(y));
    Console.WriteLine("z = " + solver.Value(z));
}
else
{
    Console.WriteLine("No solution found.");
}

El resultado se muestra a continuación:

Maximum of objective function: 35

x value:  7
y value:  3
z value:  5

Todo el programa

El programa completo se muestra a continuación.

Python

"""Simple solve."""
from ortools.sat.python import cp_model


def main() -> None:
    """Minimal CP-SAT example to showcase calling the solver."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    var_upper_bound = max(50, 45, 37)
    x = model.new_int_var(0, var_upper_bound, "x")
    y = model.new_int_var(0, var_upper_bound, "y")
    z = model.new_int_var(0, var_upper_bound, "z")

    # Creates the constraints.
    model.add(2 * x + 7 * y + 3 * z <= 50)
    model.add(3 * x - 5 * y + 7 * z <= 45)
    model.add(5 * x + 2 * y - 6 * z <= 37)

    model.maximize(2 * x + 2 * y + 3 * z)

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"Maximum of objective function: {solver.objective_value}\n")
        print(f"x = {solver.value(x)}")
        print(f"y = {solver.value(y)}")
        print(f"z = {solver.value(z)}")
    else:
        print("No solution found.")

    # Statistics.
    print("\nStatistics")
    print(f"  status   : {solver.status_name(status)}")
    print(f"  conflicts: {solver.num_conflicts}")
    print(f"  branches : {solver.num_branches}")
    print(f"  wall time: {solver.wall_time} s")


if __name__ == "__main__":
    main()

C++

#include <stdint.h>
#include <stdlib.h>

#include <algorithm>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void CpSatExample() {
  CpModelBuilder cp_model;

  int64_t var_upper_bound = std::max({50, 45, 37});
  const Domain domain(0, var_upper_bound);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddLessOrEqual(2 * x + 7 * y + 3 * z, 50);
  cp_model.AddLessOrEqual(3 * x - 5 * y + 7 * z, 45);
  cp_model.AddLessOrEqual(5 * x + 2 * y - 6 * z, 37);

  cp_model.Maximize(2 * x + 2 * y + 3 * z);

  // Solving part.
  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    // Get the value of x in the solution.
    LOG(INFO) << "Maximum of objective function: "
              << response.objective_value();
    LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
    LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
    LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
  } else {
    LOG(INFO) << "No solution found.";
  }

  // Statistics.
  LOG(INFO) << "Statistics";
  LOG(INFO) << CpSolverResponseStats(response);
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::CpSatExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import static java.util.Arrays.stream;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;
import com.google.ortools.sat.LinearExpr;

/** Minimal CP-SAT example to showcase calling the solver. */
public final class CpSatExample {
  public static void main(String[] args) {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int varUpperBound = stream(new int[] {50, 45, 37}).max().getAsInt();

    IntVar x = model.newIntVar(0, varUpperBound, "x");
    IntVar y = model.newIntVar(0, varUpperBound, "y");
    IntVar z = model.newIntVar(0, varUpperBound, "z");

    // Create the constraints.
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 7, 3}), 50);
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {3, -5, 7}), 45);
    model.addLessOrEqual(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {5, 2, -6}), 37);

    model.maximize(LinearExpr.weightedSum(new IntVar[] {x, y, z}, new long[] {2, 2, 3}));

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.printf("Maximum of objective function: %f%n", solver.objectiveValue());
      System.out.println("x = " + solver.value(x));
      System.out.println("y = " + solver.value(y));
      System.out.println("z = " + solver.value(z));
    } else {
      System.out.println("No solution found.");
    }

    // Statistics.
    System.out.println("Statistics");
    System.out.printf("  conflicts: %d%n", solver.numConflicts());
    System.out.printf("  branches : %d%n", solver.numBranches());
    System.out.printf("  wall time: %f s%n", solver.wallTime());
  }

  private CpSatExample() {}
}

C#

using System;
using System.Linq;
using Google.OrTools.Sat;

public class CpSatExample
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int varUpperBound = new int[] { 50, 45, 37 }.Max();

        IntVar x = model.NewIntVar(0, varUpperBound, "x");
        IntVar y = model.NewIntVar(0, varUpperBound, "y");
        IntVar z = model.NewIntVar(0, varUpperBound, "z");

        // Creates the constraints.
        model.Add(2 * x + 7 * y + 3 * z <= 50);
        model.Add(3 * x - 5 * y + 7 * z <= 45);
        model.Add(5 * x + 2 * y - 6 * z <= 37);

        model.Maximize(2 * x + 2 * y + 3 * z);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine($"Maximum of objective function: {solver.ObjectiveValue}");
            Console.WriteLine("x = " + solver.Value(x));
            Console.WriteLine("y = " + solver.Value(y));
            Console.WriteLine("z = " + solver.Value(z));
        }
        else
        {
            Console.WriteLine("No solution found.");
        }

        Console.WriteLine("Statistics");
        Console.WriteLine($"  conflicts: {solver.NumConflicts()}");
        Console.WriteLine($"  branches : {solver.NumBranches()}");
        Console.WriteLine($"  wall time: {solver.WallTime()}s");
    }
}