Do rozwiązywania specjalnych przypadków użycia funkcji problem z przypisaniem.
Przepływ minimalnych kosztów może często przynieść rozwiązanie szybciej niż MIP, Rozwiązanie CP-SAT. MIP i CP-SAT pozwalają jednak rozwiązywać więcej problemów niż dlatego w większości przypadków najlepszym wyborem będzie MIP lub CP-SAT.
W poniższych sekcjach znajdziesz programy w Pythonie, które rozwiązują następujące problemy zadania z przydziałem za pomocą rozwiązania przepływu minimalnego kosztu:
- Minimalistyczny przykład przypisania liniowego.
- Problem z przypisaniem zespołów pracowników.
Przykład przypisania liniowego
W tej sekcji pokazujemy, jak rozwiązać przykład opisany w sekcji Linear Assignment Solver (Rozwiązujący przypisanie liniowe), w min. .
Zaimportuj biblioteki
Poniższy kod importuje wymaganą bibliotekę.
Python
from ortools.graph.python import min_cost_flow
C++
#include <cstdint> #include <vector> #include "ortools/graph/min_cost_flow.h"
Java
import com.google.ortools.Loader; import com.google.ortools.graph.MinCostFlow; import com.google.ortools.graph.MinCostFlowBase;
C#
using System; using Google.OrTools.Graph;
Zadeklarowanie rozwiązania
Poniższy kod tworzy rozwiązanie do rozwiązywania minimalnych kosztów związanych z przepływem.
Python
# Instantiate a SimpleMinCostFlow solver. smcf = min_cost_flow.SimpleMinCostFlow()
C++
// Instantiate a SimpleMinCostFlow solver. SimpleMinCostFlow min_cost_flow;
Java
// Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow();
C#
// Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow();
Tworzenie danych
Diagram przepływu dla zadania składa się z grafu dwustronnego reprezentującego koszt macierz (zobacz omówienie projektu inny przykład) z dodanym źródłem i ujściem.
Dane zawierają następujące cztery tablice odpowiadające węzłem początkowym: węzłów końcowych, pojemności i kosztów związanych z problemem. Długość każdej tablicy wynosi czyli liczby łuków na wykresie.
Python
# Define the directed graph for the flow. start_nodes = ( [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8] ) end_nodes = ( [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9] ) capacities = ( [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1] ) costs = ( [0, 0, 0, 0] + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115] + [0, 0, 0, 0] ) source = 0 sink = 9 tasks = 4 supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]
C++
// Define four parallel arrays: sources, destinations, capacities, // and unit costs between each pair. For instance, the arc from node 0 // to node 1 has a capacity of 15. const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8}; const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9}; const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const std::vector<int64_t> unit_costs = {0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0}; const int64_t source = 0; const int64_t sink = 9; const int64_t tasks = 4; // Define an array of supplies at each node. const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};
Java
// Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = new int[] {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8}; int[] endNodes = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9}; int[] capacities = new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; int[] unitCosts = new int[] { 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0}; int source = 0; int sink = 9; int tasks = 4; // Define an array of supplies at each node. int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};
C#
// Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8 }; int[] endNodes = { 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9 }; int[] capacities = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int[] unitCosts = { 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0 }; int source = 0; int sink = 9; int tasks = 4; // Define an array of supplies at each node. int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };
Aby ułatwić zrozumienie konfiguracji danych, każda tablica jest dzielona na trzy tablice podrzędne:
- Pierwsza tablica odpowiada łukom wychodzącym ze źródła.
- Druga tablica odpowiada łukom między instancjami roboczymi i zadaniami.
W przypadku
costs
to tylko tabela kosztów (używane w rozdzielaniu zadań liniowych) rozdzielone na wektor. - Trzecia tablica odpowiada łukom prowadzącym do ujścia.
Dane obejmują również wektor supplies
określający podaży w każdym
do węzła.
Jak problem z przepływem minimalnych kosztów przedstawia problem z przypisaniem
Jak problem z przepływem minimalnych kosztów przedstawia problem z przypisaniem? Po pierwsze, ponieważ pojemność każdego łuku wynosi 1, podaż 4 w źródle wymusza na każdym z nich z czterech łuków prowadzących do instancji roboczych, aby ich przepływ wynosił 1.
Następnie warunek przypływu równa się wypływowi wymusza wypływ przez każdą instancję roboczą na 1. Jeśli to możliwe, rozwiązanie będzie przekierowywać ten przepływ przez minimalny koszt przed każdą instancją roboczą. Rozwiązanie nie może jednak kierować przepływów z dwóch różnych instancji roboczych do jednego zadania. Gdyby tak było, wprowadziliby oni łącznie przepływu 2 w tym zadaniu, których nie można było przesłać przez ten pojedynczy łuk pojemność 1 od zadania do ujścia. Oznacza to, że narzędzie może przypisać zadanie tylko 1 instancji roboczej, wymagane przez problem z przypisaniem.
I wreszcie warunek „pływanie równa się przepływowi” wymusza określenie każdego zadania odpływ równy 1, więc każde zadanie jest wykonywane przez jakąś instancję roboczą.
Tworzenie wykresu i ograniczeń
Poniższy kod tworzy wykres i ograniczenia.
Python
# Add each arc. for i in range(len(start_nodes)): smcf.add_arc_with_capacity_and_unit_cost( start_nodes[i], end_nodes[i], capacities[i], costs[i] ) # Add node supplies. for i in range(len(supplies)): smcf.set_node_supply(i, supplies[i])
C++
// Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { int arc = min_cost_flow.AddArcWithCapacityAndUnitCost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]); if (arc != i) LOG(FATAL) << "Internal error"; } // Add node supplies. for (int i = 0; i < supplies.size(); ++i) { min_cost_flow.SetNodeSupply(i, supplies[i]); }
Java
// Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = minCostFlow.addArcWithCapacityAndUnitCost( startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.length; ++i) { minCostFlow.setNodeSupply(i, supplies[i]); }
C#
// Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) throw new Exception("Internal error"); } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); }
Wywołaj rozwiązanie
Ten kod wywołuje i wyświetla rozwiązanie.
Python
# Find the minimum cost flow between node 0 and node 10. status = smcf.solve()
C++
// Find the min cost flow. int status = min_cost_flow.Solve();
Java
// Find the min cost flow. MinCostFlowBase.Status status = minCostFlow.solve();
C#
// Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve();
Rozwiązanie składa się z łuków między instancjami roboczymi i zadaniami, do których przypisano przepływ 1 przez rozwiązanie. (Łuki połączone ze źródłem lub ujściem nie są częścią rozwiązania tego problemu).
Program sprawdza każdy łuk, aby sprawdzić, czy ma przepływ 1. Jeśli tak, drukuje
Tail
(węzeł początkowy) i Head
(węzeł końcowy) łuku, które odpowiadają
instancji roboczej i zadania w projekcie.
Wyniki programu
Python
if status == smcf.OPTIMAL: print("Total cost = ", smcf.optimal_cost()) print() for arc in range(smcf.num_arcs()): # Can ignore arcs leading out of source or into sink. if smcf.tail(arc) != source and smcf.head(arc) != sink: # Arcs in the solution have a flow value of 1. Their start and end nodes # give an assignment of worker to task. if smcf.flow(arc) > 0: print( "Worker %d assigned to task %d. Cost = %d" % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc)) ) else: print("There was an issue with the min cost flow input.") print(f"Status: {status}")
C++
if (status == MinCostFlow::OPTIMAL) { LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost(); LOG(INFO) << ""; for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end // nodes give an assignment of worker to task. if (min_cost_flow.Flow(i) > 0) { LOG(INFO) << "Worker " << min_cost_flow.Tail(i) << " assigned to task " << min_cost_flow.Head(i) << " Cost: " << min_cost_flow.UnitCost(i); } } } } else { LOG(INFO) << "Solving the min cost flow problem failed."; LOG(INFO) << "Solver status: " << status; }
Java
if (status == MinCostFlow.Status.OPTIMAL) { System.out.println("Total cost: " + minCostFlow.getOptimalCost()); System.out.println(); for (int i = 0; i < minCostFlow.getNumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.getTail(i) != source && minCostFlow.getHead(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.getFlow(i) > 0) { System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task " + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i)); } } } } else { System.out.println("Solving the min cost flow problem failed."); System.out.println("Solver status: " + status); }
C#
if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Total cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.Tail(i) != source && minCostFlow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.Flow(i) > 0) { Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) + " Cost: " + minCostFlow.UnitCost(i)); } } } } else { Console.WriteLine("Solving the min cost flow problem failed."); Console.WriteLine("Solver status: " + status); }
Oto dane wyjściowe programu.
Total cost = 265 Worker 1 assigned to task 8. Cost = 70 Worker 2 assigned to task 7. Cost = 55 Worker 3 assigned to task 6. Cost = 95 Worker 4 assigned to task 5. Cost = 45 Time = 0.000245 seconds
Wynik jest taki sam jak w przypadku funkcja rozwiązania z przypisaniem liniowym (z wyjątkiem różnych liczby pracowników i koszty). Rozwiązanie z przypisaniami liniowymi jest nieco szybsze niż minimalny przepływ – 0,000147 s w porównaniu z 0,000458 sekundy.
Cały program
Cały program znajduje się poniżej.
Python
"""Linear assignment example.""" from ortools.graph.python import min_cost_flow def main(): """Solving an Assignment Problem with MinCostFlow.""" # Instantiate a SimpleMinCostFlow solver. smcf = min_cost_flow.SimpleMinCostFlow() # Define the directed graph for the flow. start_nodes = ( [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8] ) end_nodes = ( [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9] ) capacities = ( [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1] ) costs = ( [0, 0, 0, 0] + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115] + [0, 0, 0, 0] ) source = 0 sink = 9 tasks = 4 supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks] # Add each arc. for i in range(len(start_nodes)): smcf.add_arc_with_capacity_and_unit_cost( start_nodes[i], end_nodes[i], capacities[i], costs[i] ) # Add node supplies. for i in range(len(supplies)): smcf.set_node_supply(i, supplies[i]) # Find the minimum cost flow between node 0 and node 10. status = smcf.solve() if status == smcf.OPTIMAL: print("Total cost = ", smcf.optimal_cost()) print() for arc in range(smcf.num_arcs()): # Can ignore arcs leading out of source or into sink. if smcf.tail(arc) != source and smcf.head(arc) != sink: # Arcs in the solution have a flow value of 1. Their start and end nodes # give an assignment of worker to task. if smcf.flow(arc) > 0: print( "Worker %d assigned to task %d. Cost = %d" % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc)) ) else: print("There was an issue with the min cost flow input.") print(f"Status: {status}") if __name__ == "__main__": main()
C++
#include <cstdint> #include <vector> #include "ortools/graph/min_cost_flow.h" namespace operations_research { // MinCostFlow simple interface example. void AssignmentMinFlow() { // Instantiate a SimpleMinCostFlow solver. SimpleMinCostFlow min_cost_flow; // Define four parallel arrays: sources, destinations, capacities, // and unit costs between each pair. For instance, the arc from node 0 // to node 1 has a capacity of 15. const std::vector<int64_t> start_nodes = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8}; const std::vector<int64_t> end_nodes = {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9}; const std::vector<int64_t> capacities = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const std::vector<int64_t> unit_costs = {0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0}; const int64_t source = 0; const int64_t sink = 9; const int64_t tasks = 4; // Define an array of supplies at each node. const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks}; // Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { int arc = min_cost_flow.AddArcWithCapacityAndUnitCost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]); if (arc != i) LOG(FATAL) << "Internal error"; } // Add node supplies. for (int i = 0; i < supplies.size(); ++i) { min_cost_flow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. int status = min_cost_flow.Solve(); if (status == MinCostFlow::OPTIMAL) { LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost(); LOG(INFO) << ""; for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (min_cost_flow.Tail(i) != source && min_cost_flow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end // nodes give an assignment of worker to task. if (min_cost_flow.Flow(i) > 0) { LOG(INFO) << "Worker " << min_cost_flow.Tail(i) << " assigned to task " << min_cost_flow.Head(i) << " Cost: " << min_cost_flow.UnitCost(i); } } } } else { LOG(INFO) << "Solving the min cost flow problem failed."; LOG(INFO) << "Solver status: " << status; } } } // namespace operations_research int main() { operations_research::AssignmentMinFlow(); return EXIT_SUCCESS; }
Java
package com.google.ortools.graph.samples; import com.google.ortools.Loader; import com.google.ortools.graph.MinCostFlow; import com.google.ortools.graph.MinCostFlowBase; /** Minimal Assignment Min Flow. */ public class AssignmentMinFlow { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = new int[] {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8}; int[] endNodes = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9}; int[] capacities = new int[] {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; int[] unitCosts = new int[] { 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0}; int source = 0; int sink = 9; int tasks = 4; // Define an array of supplies at each node. int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks}; // Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = minCostFlow.addArcWithCapacityAndUnitCost( startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.length; ++i) { minCostFlow.setNodeSupply(i, supplies[i]); } // Find the min cost flow. MinCostFlowBase.Status status = minCostFlow.solve(); if (status == MinCostFlow.Status.OPTIMAL) { System.out.println("Total cost: " + minCostFlow.getOptimalCost()); System.out.println(); for (int i = 0; i < minCostFlow.getNumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.getTail(i) != source && minCostFlow.getHead(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.getFlow(i) > 0) { System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task " + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i)); } } } } else { System.out.println("Solving the min cost flow problem failed."); System.out.println("Solver status: " + status); } } private AssignmentMinFlow() {} }
C#
using System; using Google.OrTools.Graph; public class AssignmentMinFlow { static void Main() { // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8 }; int[] endNodes = { 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 9, 9, 9, 9 }; int[] capacities = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int[] unitCosts = { 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 0, 0, 0, 0 }; int source = 0; int sink = 9; int tasks = 4; // Define an array of supplies at each node. int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, -tasks }; // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) throw new Exception("Internal error"); } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve(); if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Total cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.Tail(i) != source && minCostFlow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.Flow(i) > 0) { Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) + " Cost: " + minCostFlow.UnitCost(i)); } } } } else { Console.WriteLine("Solving the min cost flow problem failed."); Console.WriteLine("Solver status: " + status); } } }
Projektowanie z zespołami pracowników
Ta sekcja zawiera bardziej ogólny problem z przypisaniem. W tym zadaniu 6 z nich Pracownicy są podzieleni na 2 zespoły. Problem polega na przypisaniu czterech zadań pracowników, aby zapewnić równoważenie obciążenia między zespołami – a każdy zespół ma dwa zadania.
Rozwiązanie MIP do rozwiązania tego problemu znajdziesz na stronie Projekty z zespołami pracowników.
W poniższych sekcjach opisano program, który rozwiązuje problem za pomocą parametru min. do rozwiązywania problemów z przepływem kosztów.
Zaimportuj biblioteki
Poniższy kod importuje wymaganą bibliotekę.
Python
from ortools.graph.python import min_cost_flow
C++
#include <cstdint> #include <vector> #include "ortools/graph/min_cost_flow.h"
Java
import com.google.ortools.Loader; import com.google.ortools.graph.MinCostFlow; import com.google.ortools.graph.MinCostFlowBase;
C#
using System; using Google.OrTools.Graph;
Zadeklarowanie rozwiązania
Poniższy kod tworzy rozwiązanie do rozwiązywania minimalnych kosztów związanych z przepływem.
Python
smcf = min_cost_flow.SimpleMinCostFlow()
C++
// Instantiate a SimpleMinCostFlow solver. SimpleMinCostFlow min_cost_flow;
Java
// Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow();
C#
// Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow();
Tworzenie danych
Poniższy kod tworzy dane dla programu.
Python
# Define the directed graph for the flow. team_a = [1, 3, 5] team_b = [2, 4, 6] start_nodes = ( # fmt: off [0, 0] + [11, 11, 11] + [12, 12, 12] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6] + [7, 8, 9, 10] # fmt: on ) end_nodes = ( # fmt: off [11, 12] + team_a + team_b + [7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10] + [13, 13, 13, 13] # fmt: on ) capacities = ( # fmt: off [2, 2] + [1, 1, 1] + [1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1] # fmt: on ) costs = ( # fmt: off [0, 0] + [0, 0, 0] + [0, 0, 0] + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95] + [0, 0, 0, 0] # fmt: on ) source = 0 sink = 13 tasks = 4 # Define an array of supplies at each node. supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks]
C++
// Define the directed graph for the flow. const std::vector<int64_t> team_A = {1, 3, 5}; const std::vector<int64_t> team_B = {2, 4, 6}; const std::vector<int64_t> start_nodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10}; const std::vector<int64_t> end_nodes = { 11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13}; const std::vector<int64_t> capacities = {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const std::vector<int64_t> unit_costs = { 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0}; const int64_t source = 0; const int64_t sink = 13; const int64_t tasks = 4; // Define an array of supplies at each node. const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};
Java
// Define the directed graph for the flow. // int[] teamA = new int[] {1, 3, 5}; // int[] teamB = new int[] {2, 4, 6}; int[] startNodes = new int[] {0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10}; int[] endNodes = new int[] {11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13}; int[] capacities = new int[] {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; int[] unitCosts = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0}; int source = 0; int sink = 13; int tasks = 4; // Define an array of supplies at each node. int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks};
C#
// Define the directed graph for the flow. int[] teamA = { 1, 3, 5 }; int[] teamB = { 2, 4, 6 }; // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10 }; int[] endNodes = { 11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13 }; int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int[] unitCosts = { 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0 }; int source = 0; int sink = 13; int tasks = 4; // Define an array of supplies at each node. int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks };
Instancje robocze odpowiadają węzłom 1–6. Zespół A składa się z pracowników 1, 3 i 5, a zespół B to pracownicy 2, 4 i 6. Zadania mają numery 7–10.
Między źródłem a instancjami roboczymi znajdują się 2 nowe węzły – 11 i 12. Węzeł 11 to połączone z węzłami zespołu A, a węzeł 12 jest połączony z węzłami drużynie B o łukach o pojemności 1. Wykres poniżej pokazuje tylko węzły i łuki ze źródła do instancji roboczych.
Kluczem do równoważenia obciążenia jest połączenie źródła 0 z węzłami 11 i 12 na łukach o pojemności 2. Oznacza to, że węzły 11 i 12 (i dlatego zespoły A i B) mogą mieć maksymalnie 2 przepływy. W efekcie każdy zespół może wykonać maksymalnie 2 zadania.
Tworzenie ograniczeń
Python
# Add each arc. for i in range(0, len(start_nodes)): smcf.add_arc_with_capacity_and_unit_cost( start_nodes[i], end_nodes[i], capacities[i], costs[i] ) # Add node supplies. for i in range(0, len(supplies)): smcf.set_node_supply(i, supplies[i])
C++
// Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { int arc = min_cost_flow.AddArcWithCapacityAndUnitCost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]); if (arc != i) LOG(FATAL) << "Internal error"; } // Add node supplies. for (int i = 0; i < supplies.size(); ++i) { min_cost_flow.SetNodeSupply(i, supplies[i]); }
Java
// Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = minCostFlow.addArcWithCapacityAndUnitCost( startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.length; ++i) { minCostFlow.setNodeSupply(i, supplies[i]); }
C#
// Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) throw new Exception("Internal error"); } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); }
Wywołaj rozwiązanie
Python
# Find the minimum cost flow between node 0 and node 10. status = smcf.solve()
C++
// Find the min cost flow. int status = min_cost_flow.Solve();
Java
// Find the min cost flow. MinCostFlowBase.Status status = minCostFlow.solve();
C#
// Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve();
Wyniki programu
Python
if status == smcf.OPTIMAL: print("Total cost = ", smcf.optimal_cost()) print() for arc in range(smcf.num_arcs()): # Can ignore arcs leading out of source or intermediate, or into sink. if ( smcf.tail(arc) != source and smcf.tail(arc) != 11 and smcf.tail(arc) != 12 and smcf.head(arc) != sink ): # Arcs in the solution will have a flow value of 1. # There start and end nodes give an assignment of worker to task. if smcf.flow(arc) > 0: print( "Worker %d assigned to task %d. Cost = %d" % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc)) ) else: print("There was an issue with the min cost flow input.") print(f"Status: {status}")
C++
if (status == MinCostFlow::OPTIMAL) { LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost(); LOG(INFO) << ""; for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) { // Can ignore arcs leading out of source or intermediate nodes, or into // sink. if (min_cost_flow.Tail(i) != source && min_cost_flow.Tail(i) != 11 && min_cost_flow.Tail(i) != 12 && min_cost_flow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end // nodes give an assignment of worker to task. if (min_cost_flow.Flow(i) > 0) { LOG(INFO) << "Worker " << min_cost_flow.Tail(i) << " assigned to task " << min_cost_flow.Head(i) << " Cost: " << min_cost_flow.UnitCost(i); } } } } else { LOG(INFO) << "Solving the min cost flow problem failed."; LOG(INFO) << "Solver status: " << status; }
Java
if (status == MinCostFlow.Status.OPTIMAL) { System.out.println("Total cost: " + minCostFlow.getOptimalCost()); System.out.println(); for (int i = 0; i < minCostFlow.getNumArcs(); ++i) { // Can ignore arcs leading out of source or intermediate nodes, or into sink. if (minCostFlow.getTail(i) != source && minCostFlow.getTail(i) != 11 && minCostFlow.getTail(i) != 12 && minCostFlow.getHead(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.getFlow(i) > 0) { System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task " + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i)); } } } } else { System.out.println("Solving the min cost flow problem failed."); System.out.println("Solver status: " + status); }
C#
if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Total cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.Tail(i) != source && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 && minCostFlow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.Flow(i) > 0) { Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) + " Cost: " + minCostFlow.UnitCost(i)); } } } } else { Console.WriteLine("Solving the min cost flow problem failed."); Console.WriteLine("Solver status: " + status); }
Poniżej przedstawiono dane wyjściowe programu.
Total cost = 250 Worker 1 assigned to task 9. Cost = 75 Worker 2 assigned to task 7. Cost = 35 Worker 5 assigned to task 10. Cost = 75 Worker 6 assigned to task 8. Cost = 65 Time = 0.00031 seconds
Zespół A ma przypisane zadania 9 i 10, a zespołowi B zadania 7 i 8.
Pamiętaj, że rozwiązanie dla przepływu minimalnego kosztu jest szybsze niż Rozwiązanie MIP, które trwa około 0,006 sekundy.
Cały program
Cały program znajduje się poniżej.
Python
"""Assignment with teams of workers.""" from ortools.graph.python import min_cost_flow def main(): """Solving an Assignment with teams of worker.""" smcf = min_cost_flow.SimpleMinCostFlow() # Define the directed graph for the flow. team_a = [1, 3, 5] team_b = [2, 4, 6] start_nodes = ( # fmt: off [0, 0] + [11, 11, 11] + [12, 12, 12] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6] + [7, 8, 9, 10] # fmt: on ) end_nodes = ( # fmt: off [11, 12] + team_a + team_b + [7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10] + [13, 13, 13, 13] # fmt: on ) capacities = ( # fmt: off [2, 2] + [1, 1, 1] + [1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1] # fmt: on ) costs = ( # fmt: off [0, 0] + [0, 0, 0] + [0, 0, 0] + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95] + [0, 0, 0, 0] # fmt: on ) source = 0 sink = 13 tasks = 4 # Define an array of supplies at each node. supplies = [tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks] # Add each arc. for i in range(0, len(start_nodes)): smcf.add_arc_with_capacity_and_unit_cost( start_nodes[i], end_nodes[i], capacities[i], costs[i] ) # Add node supplies. for i in range(0, len(supplies)): smcf.set_node_supply(i, supplies[i]) # Find the minimum cost flow between node 0 and node 10. status = smcf.solve() if status == smcf.OPTIMAL: print("Total cost = ", smcf.optimal_cost()) print() for arc in range(smcf.num_arcs()): # Can ignore arcs leading out of source or intermediate, or into sink. if ( smcf.tail(arc) != source and smcf.tail(arc) != 11 and smcf.tail(arc) != 12 and smcf.head(arc) != sink ): # Arcs in the solution will have a flow value of 1. # There start and end nodes give an assignment of worker to task. if smcf.flow(arc) > 0: print( "Worker %d assigned to task %d. Cost = %d" % (smcf.tail(arc), smcf.head(arc), smcf.unit_cost(arc)) ) else: print("There was an issue with the min cost flow input.") print(f"Status: {status}") if __name__ == "__main__": main()
C++
#include <cstdint> #include <vector> #include "ortools/graph/min_cost_flow.h" namespace operations_research { // MinCostFlow simple interface example. void BalanceMinFlow() { // Instantiate a SimpleMinCostFlow solver. SimpleMinCostFlow min_cost_flow; // Define the directed graph for the flow. const std::vector<int64_t> team_A = {1, 3, 5}; const std::vector<int64_t> team_B = {2, 4, 6}; const std::vector<int64_t> start_nodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10}; const std::vector<int64_t> end_nodes = { 11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13}; const std::vector<int64_t> capacities = {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; const std::vector<int64_t> unit_costs = { 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0}; const int64_t source = 0; const int64_t sink = 13; const int64_t tasks = 4; // Define an array of supplies at each node. const std::vector<int64_t> supplies = {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks}; // Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { int arc = min_cost_flow.AddArcWithCapacityAndUnitCost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]); if (arc != i) LOG(FATAL) << "Internal error"; } // Add node supplies. for (int i = 0; i < supplies.size(); ++i) { min_cost_flow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. int status = min_cost_flow.Solve(); if (status == MinCostFlow::OPTIMAL) { LOG(INFO) << "Total cost: " << min_cost_flow.OptimalCost(); LOG(INFO) << ""; for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) { // Can ignore arcs leading out of source or intermediate nodes, or into // sink. if (min_cost_flow.Tail(i) != source && min_cost_flow.Tail(i) != 11 && min_cost_flow.Tail(i) != 12 && min_cost_flow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end // nodes give an assignment of worker to task. if (min_cost_flow.Flow(i) > 0) { LOG(INFO) << "Worker " << min_cost_flow.Tail(i) << " assigned to task " << min_cost_flow.Head(i) << " Cost: " << min_cost_flow.UnitCost(i); } } } } else { LOG(INFO) << "Solving the min cost flow problem failed."; LOG(INFO) << "Solver status: " << status; } } } // namespace operations_research int main() { operations_research::BalanceMinFlow(); return EXIT_SUCCESS; }
Java
package com.google.ortools.graph.samples; import com.google.ortools.Loader; import com.google.ortools.graph.MinCostFlow; import com.google.ortools.graph.MinCostFlowBase; /** Minimal Assignment Min Flow. */ public class BalanceMinFlow { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Define the directed graph for the flow. // int[] teamA = new int[] {1, 3, 5}; // int[] teamB = new int[] {2, 4, 6}; int[] startNodes = new int[] {0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10}; int[] endNodes = new int[] {11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13}; int[] capacities = new int[] {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; int[] unitCosts = new int[] {0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0}; int source = 0; int sink = 13; int tasks = 4; // Define an array of supplies at each node. int[] supplies = new int[] {tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks}; // Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = minCostFlow.addArcWithCapacityAndUnitCost( startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.length; ++i) { minCostFlow.setNodeSupply(i, supplies[i]); } // Find the min cost flow. MinCostFlowBase.Status status = minCostFlow.solve(); if (status == MinCostFlow.Status.OPTIMAL) { System.out.println("Total cost: " + minCostFlow.getOptimalCost()); System.out.println(); for (int i = 0; i < minCostFlow.getNumArcs(); ++i) { // Can ignore arcs leading out of source or intermediate nodes, or into sink. if (minCostFlow.getTail(i) != source && minCostFlow.getTail(i) != 11 && minCostFlow.getTail(i) != 12 && minCostFlow.getHead(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.getFlow(i) > 0) { System.out.println("Worker " + minCostFlow.getTail(i) + " assigned to task " + minCostFlow.getHead(i) + " Cost: " + minCostFlow.getUnitCost(i)); } } } } else { System.out.println("Solving the min cost flow problem failed."); System.out.println("Solver status: " + status); } } private BalanceMinFlow() {} }
C#
using System; using Google.OrTools.Graph; public class BalanceMinFlow { static void Main() { // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Define the directed graph for the flow. int[] teamA = { 1, 3, 5 }; int[] teamB = { 2, 4, 6 }; // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10 }; int[] endNodes = { 11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13 }; int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int[] unitCosts = { 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0 }; int source = 0; int sink = 13; int tasks = 4; // Define an array of supplies at each node. int[] supplies = { tasks, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -tasks }; // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) throw new Exception("Internal error"); } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve(); if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Total cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.Tail(i) != source && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 && minCostFlow.Head(i) != sink) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.Flow(i) > 0) { Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) + " Cost: " + minCostFlow.UnitCost(i)); } } } } else { Console.WriteLine("Solving the min cost flow problem failed."); Console.WriteLine("Solver status: " + status); } } }