Maximale Abläufe

In den folgenden Abschnitten finden Sie ein Beispiel für einen maximalen Datenfluss. (max Flow) zu beseitigen.

Beispiel für einen maximalen Datenfluss

Das Problem wird durch die folgende Grafik definiert, die ein Transportmittel Netzwerk:

Netzwerkflussdiagramm

Sie möchten Material von Knoten 0 (Quelle) zum Knoten 4 (dem Knoten 4) übertragen. sink). Die Zahlen neben den Bögen sind ihre Kapazitäten – die Die Kapazität eines Bogens ist die maximale Menge, die in einem Bogen über ihn transportiert werden kann. bestimmten Zeitraums zu erreichen. Die Kapazitäten sind die Beschränkungen für das Problem.

Ein Ablauf ist die Zuweisung einer nicht negativen Zahl zu jedem Bogen (der Flussmenge), die die folgende Flusserhaltungsregel erfüllt:

Das Problem mit dem maximalen Datenfluss besteht darin, einen Datenfluss zu finden, dass das gesamte Netzwerk so groß wie möglich ist.

In den folgenden Abschnitten werden Programme vorgestellt, mit denen Sie den maximalen Datenfluss aus der Quelle (0) zur Senke (4).

Bibliotheken importieren

Mit dem folgenden Code wird die erforderliche Bibliothek importiert.

Python

import numpy as np

from ortools.graph.python import max_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/max_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MaxFlow;

C#

using System;
using Google.OrTools.Graph;

Löser deklarieren

Um das Problem zu lösen, können Sie den SimpleMaxFlow-Löser.

Python

# Instantiate a SimpleMaxFlow solver.
smf = max_flow.SimpleMaxFlow()

C++

// Instantiate a SimpleMaxFlow solver.
SimpleMaxFlow max_flow;

Java

// Instantiate a SimpleMaxFlow solver.
MaxFlow maxFlow = new MaxFlow();

C#

// Instantiate a SimpleMaxFlow solver.
MaxFlow maxFlow = new MaxFlow();

Daten definieren

Sie definieren den Graphen für das Problem mit drei Arrays, und die Kapazitäten der Bögen. Die Länge jedes Arrays entspricht der Anzahl der Bögen im Diagramm.

Für jedes i verläuft der Bogen i von start_nodes[i] bis end_nodes[i] und seine Kapazität ist von capacities[i] angegeben. Im nächsten Abschnitt wird gezeigt, wie Sie die Bögen mit diese Daten.

Python

# Define three parallel arrays: start_nodes, end_nodes, and the capacities
# between each pair. For instance, the arc from node 0 to node 1 has a
# capacity of 20.
start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3])
end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4])
capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20])

C++

// Define three parallel arrays: start_nodes, end_nodes, and the capacities
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 20.
std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3};
std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4};
std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20};

Java

// Define three parallel arrays: start_nodes, end_nodes, and the capacities
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 20.
// From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3};
int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4};
int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20};

C#

// Define three parallel arrays: start_nodes, end_nodes, and the capacities
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 20.
// From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 };
int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 };
int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 };

Bögen hinzufügen

Für jeden Start- und Endknoten erstellen Sie einen Bogen vom Startknoten zum Endknoten. mit der gegebenen Kapazität unter Verwendung der Methode AddArcWithCapacity verwendet wird. Die Kapazitäten sind die für das Problem.

Python

# Add arcs in bulk.
#   note: we could have used add_arc_with_capacity(start, end, capacity)
all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities)

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

Solver aufrufen

Nachdem nun alle Bögen definiert wurden, muss nur noch die Funktion und die Ergebnisse anzeigen. Sie rufen die Methode Solve() auf und geben dabei den Parameter Quelle (0) und Senke (4).

Python

# Find the maximum flow between node 0 and node 4.
status = smf.solve(0, 4)

C++

// Find the maximum flow between node 0 and node 4.
int status = max_flow.Solve(0, 4);

Java

// Find the maximum flow between node 0 and node 4.
MaxFlow.Status status = maxFlow.solve(0, 4);

C#

// Find the maximum flow between node 0 and node 4.
MaxFlow.Status status = maxFlow.Solve(0, 4);

Ergebnisse anzeigen

Jetzt können Sie den Fluss in jedem Bogen darstellen.

Python

if status != smf.OPTIMAL:
    print("There was an issue with the max flow input.")
    print(f"Status: {status}")
    exit(1)
print("Max flow:", smf.optimal_flow())
print("")
print(" Arc    Flow / Capacity")
solution_flows = smf.flows(all_arcs)
for arc, flow, capacity in zip(all_arcs, solution_flows, capacities):
    print(f"{smf.tail(arc)} / {smf.head(arc)}   {flow:3}  / {capacity:3}")
print("Source side min-cut:", smf.get_source_side_min_cut())
print("Sink side min-cut:", smf.get_sink_side_min_cut())

C++

if (status == MaxFlow::OPTIMAL) {
  LOG(INFO) << "Max flow: " << max_flow.OptimalFlow();
  LOG(INFO) << "";
  LOG(INFO) << "  Arc    Flow / Capacity";
  for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) {
    LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << "  "
              << max_flow.Flow(i) << "  / " << max_flow.Capacity(i);
  }
} else {
  LOG(INFO) << "Solving the max flow problem failed. Solver status: "
            << status;
}

Java

if (status == MaxFlow.Status.OPTIMAL) {
  System.out.println("Max. flow: " + maxFlow.getOptimalFlow());
  System.out.println();
  System.out.println("  Arc     Flow / Capacity");
  for (int i = 0; i < maxFlow.getNumArcs(); ++i) {
    System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + "    "
        + maxFlow.getFlow(i) + "  /  " + maxFlow.getCapacity(i));
  }
} else {
  System.out.println("Solving the max flow problem failed. Solver status: " + status);
}

C#

if (status == MaxFlow.Status.OPTIMAL)
{
    Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow());
    Console.WriteLine("");
    Console.WriteLine("  Arc     Flow / Capacity");
    for (int i = 0; i < maxFlow.NumArcs(); ++i)
    {
        Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + "    " +
                          string.Format("{0,3}", maxFlow.Flow(i)) + "  /  " +
                          string.Format("{0,3}", maxFlow.Capacity(i)));
    }
}
else
{
    Console.WriteLine("Solving the max flow problem failed. Solver status: " + status);
}

Hier ist die Ausgabe des Programms:

Max flow: 60

  Arc    Flow / Capacity
0 -> 1    20  /  20
0 -> 2    30  /  30
0 -> 3    10  /  10
1 -> 2     0  /  40
1 -> 4    20  /  30
2 -> 3    10  /  10
2 -> 4    20  /  20
3 -> 2     0  /   5
3 -> 4    20  /  20
Source side min-cut: [0]
Sink side min-cut: [4, 1]

Die Flussmengen in jedem Bogen werden unter Flow angezeigt.

Programme abschließen

Hier sind die kompletten Programme.

Python

"""From Taha 'Introduction to Operations Research', example 6.4-2."""
import numpy as np

from ortools.graph.python import max_flow


def main():
    """MaxFlow simple interface example."""
    # Instantiate a SimpleMaxFlow solver.
    smf = max_flow.SimpleMaxFlow()

    # Define three parallel arrays: start_nodes, end_nodes, and the capacities
    # between each pair. For instance, the arc from node 0 to node 1 has a
    # capacity of 20.
    start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3])
    end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4])
    capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20])

    # Add arcs in bulk.
    #   note: we could have used add_arc_with_capacity(start, end, capacity)
    all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities)

    # Find the maximum flow between node 0 and node 4.
    status = smf.solve(0, 4)

    if status != smf.OPTIMAL:
        print("There was an issue with the max flow input.")
        print(f"Status: {status}")
        exit(1)
    print("Max flow:", smf.optimal_flow())
    print("")
    print(" Arc    Flow / Capacity")
    solution_flows = smf.flows(all_arcs)
    for arc, flow, capacity in zip(all_arcs, solution_flows, capacities):
        print(f"{smf.tail(arc)} / {smf.head(arc)}   {flow:3}  / {capacity:3}")
    print("Source side min-cut:", smf.get_source_side_min_cut())
    print("Sink side min-cut:", smf.get_sink_side_min_cut())


if __name__ == "__main__":
    main()

C++

// From Taha 'Introduction to Operations Research', example 6.4-2."""
#include <cstdint>
#include <vector>

#include "ortools/graph/max_flow.h"

namespace operations_research {
// MaxFlow simple interface example.
void SimpleMaxFlowProgram() {
  // Instantiate a SimpleMaxFlow solver.
  SimpleMaxFlow max_flow;

  // Define three parallel arrays: start_nodes, end_nodes, and the capacities
  // between each pair. For instance, the arc from node 0 to node 1 has a
  // capacity of 20.
  std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3};
  std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4};
  std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]);
  }

  // Find the maximum flow between node 0 and node 4.
  int status = max_flow.Solve(0, 4);

  if (status == MaxFlow::OPTIMAL) {
    LOG(INFO) << "Max flow: " << max_flow.OptimalFlow();
    LOG(INFO) << "";
    LOG(INFO) << "  Arc    Flow / Capacity";
    for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) {
      LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << "  "
                << max_flow.Flow(i) << "  / " << max_flow.Capacity(i);
    }
  } else {
    LOG(INFO) << "Solving the max flow problem failed. Solver status: "
              << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::SimpleMaxFlowProgram();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MaxFlow;

/** Minimal MaxFlow program. */
public final class SimpleMaxFlowProgram {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMaxFlow solver.
    MaxFlow maxFlow = new MaxFlow();

    // Define three parallel arrays: start_nodes, end_nodes, and the capacities
    // between each pair. For instance, the arc from node 0 to node 1 has a
    // capacity of 20.
    // From Taha's 'Introduction to Operations Research',
    // example 6.4-2.
    int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3};
    int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4};
    int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Find the maximum flow between node 0 and node 4.
    MaxFlow.Status status = maxFlow.solve(0, 4);

    if (status == MaxFlow.Status.OPTIMAL) {
      System.out.println("Max. flow: " + maxFlow.getOptimalFlow());
      System.out.println();
      System.out.println("  Arc     Flow / Capacity");
      for (int i = 0; i < maxFlow.getNumArcs(); ++i) {
        System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + "    "
            + maxFlow.getFlow(i) + "  /  " + maxFlow.getCapacity(i));
      }
    } else {
      System.out.println("Solving the max flow problem failed. Solver status: " + status);
    }
  }

  private SimpleMaxFlowProgram() {}
}

C#

// From Taha 'Introduction to Operations Research', example 6.4-2.
using System;
using Google.OrTools.Graph;

public class SimpleMaxFlowProgram
{
    static void Main()
    {
        // Instantiate a SimpleMaxFlow solver.
        MaxFlow maxFlow = new MaxFlow();

        // Define three parallel arrays: start_nodes, end_nodes, and the capacities
        // between each pair. For instance, the arc from node 0 to node 1 has a
        // capacity of 20.
        // From Taha's 'Introduction to Operations Research',
        // example 6.4-2.
        int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 };
        int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 };
        int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Find the maximum flow between node 0 and node 4.
        MaxFlow.Status status = maxFlow.Solve(0, 4);

        if (status == MaxFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow());
            Console.WriteLine("");
            Console.WriteLine("  Arc     Flow / Capacity");
            for (int i = 0; i < maxFlow.NumArcs(); ++i)
            {
                Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + "    " +
                                  string.Format("{0,3}", maxFlow.Flow(i)) + "  /  " +
                                  string.Format("{0,3}", maxFlow.Capacity(i)));
            }
        }
        else
        {
            Console.WriteLine("Solving the max flow problem failed. Solver status: " + status);
        }
    }
}