Nelle sezioni seguenti viene mostrato un esempio di flusso massimo. (flusso massimo).
Esempio di flusso massimo
Il problema è definito dal grafico seguente, che rappresenta un mezzo di trasporto rete:
Vuoi trasportare il materiale dal nodo 0 (l'origine) al nodo 4 (il sink). I numeri accanto agli archi sono le loro capacità: la capacità di un arco è la quantità massima che può essere trasportata attraverso un periodo di tempo prestabilito. Le capacità sono i vincoli del problema.
Un flusso è un'assegnazione di un numero non negativo a ciascun arco (il flow amount) che soddisfa la seguente regola di conservazione del flusso:
Il problema del flusso massimo è trovare un flusso per il quale la somma dei valori del flusso sia la più grande possibile.
Le seguenti sezioni presentano un programma per trovare il flusso massimo dall' dall'origine (0) al sink (4).
Importa le librerie
Il codice seguente importa la libreria richiesta.
Python
import numpy as np from ortools.graph.python import max_flow
C++
#include <cstdint> #include <vector> #include "ortools/graph/max_flow.h"
Java
import com.google.ortools.Loader; import com.google.ortools.graph.MaxFlow;
C#
using System; using Google.OrTools.Graph;
Dichiara il risolutore
Per risolvere il problema, puoi utilizzare Risolutore SimpleMaxFlow.
Python
# Instantiate a SimpleMaxFlow solver. smf = max_flow.SimpleMaxFlow()
C++
// Instantiate a SimpleMaxFlow solver. SimpleMaxFlow max_flow;
Java
// Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow();
C#
// Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow();
Definisci i dati
Definisci il grafico del problema con tre array, ovvero i nodi di inizio, nodi e capacità degli archi. La lunghezza di ogni array equivale al numero di archi del grafico.
Per ogni i, l'arco i va da start_nodes[i]
a end_nodes[i]
e la sua capacità
fornito da capacities[i]
. La prossima sezione mostra come creare archi
questi dati.
Python
# Define three parallel arrays: start_nodes, end_nodes, and the capacities # between each pair. For instance, the arc from node 0 to node 1 has a # capacity of 20. start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3]) end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4]) capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20])
C++
// Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3}; std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4}; std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20};
Java
// Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3}; int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4}; int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20};
C#
// Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 }; int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 }; int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 };
Aggiungi gli archi
Per ogni nodo iniziale e nodo finale, crei un arco dal nodo iniziale al nodo finale. con la capacità data, utilizzando il metodo AddArcWithCapacity. Le capacità sono i vincoli per risolvere il problema.
Python
# Add arcs in bulk. # note: we could have used add_arc_with_capacity(start, end, capacity) all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities)
C++
// Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]); }
Java
// Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) { throw new Exception("Internal error"); } }
C#
// Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) throw new Exception("Internal error"); }
Richiama il risolutore
Ora che tutti gli archi sono stati definiti, non rimane altro da richiamare
risolutore di codice e visualizzare i risultati. Richiami il metodo Solve()
, fornendo
origine (0) e sink (4).
Python
# Find the maximum flow between node 0 and node 4. status = smf.solve(0, 4)
C++
// Find the maximum flow between node 0 and node 4. int status = max_flow.Solve(0, 4);
Java
// Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.solve(0, 4);
C#
// Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.Solve(0, 4);
Visualizza i risultati
Ora puoi visualizzare il flusso in ogni arco.
Python
if status != smf.OPTIMAL: print("There was an issue with the max flow input.") print(f"Status: {status}") exit(1) print("Max flow:", smf.optimal_flow()) print("") print(" Arc Flow / Capacity") solution_flows = smf.flows(all_arcs) for arc, flow, capacity in zip(all_arcs, solution_flows, capacities): print(f"{smf.tail(arc)} / {smf.head(arc)} {flow:3} / {capacity:3}") print("Source side min-cut:", smf.get_source_side_min_cut()) print("Sink side min-cut:", smf.get_sink_side_min_cut())
C++
if (status == MaxFlow::OPTIMAL) { LOG(INFO) << "Max flow: " << max_flow.OptimalFlow(); LOG(INFO) << ""; LOG(INFO) << " Arc Flow / Capacity"; for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) { LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << " " << max_flow.Flow(i) << " / " << max_flow.Capacity(i); } } else { LOG(INFO) << "Solving the max flow problem failed. Solver status: " << status; }
Java
if (status == MaxFlow.Status.OPTIMAL) { System.out.println("Max. flow: " + maxFlow.getOptimalFlow()); System.out.println(); System.out.println(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.getNumArcs(); ++i) { System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + " " + maxFlow.getFlow(i) + " / " + maxFlow.getCapacity(i)); } } else { System.out.println("Solving the max flow problem failed. Solver status: " + status); }
C#
if (status == MaxFlow.Status.OPTIMAL) { Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow()); Console.WriteLine(""); Console.WriteLine(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.NumArcs(); ++i) { Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + " " + string.Format("{0,3}", maxFlow.Flow(i)) + " / " + string.Format("{0,3}", maxFlow.Capacity(i))); } } else { Console.WriteLine("Solving the max flow problem failed. Solver status: " + status); }
Ecco l'output del programma:
Max flow: 60 Arc Flow / Capacity 0 -> 1 20 / 20 0 -> 2 30 / 30 0 -> 3 10 / 10 1 -> 2 0 / 40 1 -> 4 20 / 30 2 -> 3 10 / 10 2 -> 4 20 / 20 3 -> 2 0 / 5 3 -> 4 20 / 20 Source side min-cut: [0] Sink side min-cut: [4, 1]
Le quantità del flusso in ogni arco sono visualizzate in Flow
.
Completa i programmi
Riassumendo, ecco i programmi completi.
Python
"""From Taha 'Introduction to Operations Research', example 6.4-2.""" import numpy as np from ortools.graph.python import max_flow def main(): """MaxFlow simple interface example.""" # Instantiate a SimpleMaxFlow solver. smf = max_flow.SimpleMaxFlow() # Define three parallel arrays: start_nodes, end_nodes, and the capacities # between each pair. For instance, the arc from node 0 to node 1 has a # capacity of 20. start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3]) end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4]) capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20]) # Add arcs in bulk. # note: we could have used add_arc_with_capacity(start, end, capacity) all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities) # Find the maximum flow between node 0 and node 4. status = smf.solve(0, 4) if status != smf.OPTIMAL: print("There was an issue with the max flow input.") print(f"Status: {status}") exit(1) print("Max flow:", smf.optimal_flow()) print("") print(" Arc Flow / Capacity") solution_flows = smf.flows(all_arcs) for arc, flow, capacity in zip(all_arcs, solution_flows, capacities): print(f"{smf.tail(arc)} / {smf.head(arc)} {flow:3} / {capacity:3}") print("Source side min-cut:", smf.get_source_side_min_cut()) print("Sink side min-cut:", smf.get_sink_side_min_cut()) if __name__ == "__main__": main()
C++
// From Taha 'Introduction to Operations Research', example 6.4-2.""" #include <cstdint> #include <vector> #include "ortools/graph/max_flow.h" namespace operations_research { // MaxFlow simple interface example. void SimpleMaxFlowProgram() { // Instantiate a SimpleMaxFlow solver. SimpleMaxFlow max_flow; // Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3}; std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4}; std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20}; // Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]); } // Find the maximum flow between node 0 and node 4. int status = max_flow.Solve(0, 4); if (status == MaxFlow::OPTIMAL) { LOG(INFO) << "Max flow: " << max_flow.OptimalFlow(); LOG(INFO) << ""; LOG(INFO) << " Arc Flow / Capacity"; for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) { LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << " " << max_flow.Flow(i) << " / " << max_flow.Capacity(i); } } else { LOG(INFO) << "Solving the max flow problem failed. Solver status: " << status; } } } // namespace operations_research int main() { operations_research::SimpleMaxFlowProgram(); return EXIT_SUCCESS; }
Java
package com.google.ortools.graph.samples; import com.google.ortools.Loader; import com.google.ortools.graph.MaxFlow; /** Minimal MaxFlow program. */ public final class SimpleMaxFlowProgram { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow(); // Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3}; int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4}; int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20}; // Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) { throw new Exception("Internal error"); } } // Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.solve(0, 4); if (status == MaxFlow.Status.OPTIMAL) { System.out.println("Max. flow: " + maxFlow.getOptimalFlow()); System.out.println(); System.out.println(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.getNumArcs(); ++i) { System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + " " + maxFlow.getFlow(i) + " / " + maxFlow.getCapacity(i)); } } else { System.out.println("Solving the max flow problem failed. Solver status: " + status); } } private SimpleMaxFlowProgram() {} }
C#
// From Taha 'Introduction to Operations Research', example 6.4-2. using System; using Google.OrTools.Graph; public class SimpleMaxFlowProgram { static void Main() { // Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow(); // Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 }; int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 }; int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 }; // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) throw new Exception("Internal error"); } // Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.Solve(0, 4); if (status == MaxFlow.Status.OPTIMAL) { Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow()); Console.WriteLine(""); Console.WriteLine(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.NumArcs(); ++i) { Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + " " + string.Format("{0,3}", maxFlow.Flow(i)) + " / " + string.Format("{0,3}", maxFlow.Capacity(i))); } } else { Console.WriteLine("Solving the max flow problem failed. Solver status: " + status); } } }