В следующих разделах вы получите пример проблемы максимального расхода ( max flow ).
Пример максимального расхода
Задача определяется следующим графом, представляющим транспортную сеть:
Вы хотите транспортировать материал из узла 0 ( источника ) в узел 4 ( приемника ). Цифры рядом с дугами — это их мощности — мощность дуги — это максимальный объем, который можно перевезти через нее за фиксированный период времени. Возможности являются ограничениями для проблемы.
Поток — это присвоение каждой дуге неотрицательного числа ( величины потока ), которое удовлетворяет следующему правилу сохранения потока :
Задача максимального потока состоит в том, чтобы найти поток, для которого сумма величин потока для всей сети будет как можно большей.
В следующих разделах представлены программы для поиска максимального расхода от источника (0) к стоку (4).
Импортируйте библиотеки
Следующий код импортирует необходимую библиотеку.
Питон
import numpy as np from ortools.graph.python import max_flow
С++
#include <cstdint> #include <vector> #include "ortools/graph/max_flow.h"
Ява
import com.google.ortools.Loader; import com.google.ortools.graph.MaxFlow;
С#
using System; using Google.OrTools.Graph;
Объявить решатель
Для решения задачи можно использовать решатель SimpleMaxFlow .
Питон
# Instantiate a SimpleMaxFlow solver. smf = max_flow.SimpleMaxFlow()
С++
// Instantiate a SimpleMaxFlow solver. SimpleMaxFlow max_flow;
Ява
// Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow();
С#
// Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow();
Определите данные
Вы определяете граф для задачи с тремя массивами для начальных узлов, конечных узлов и пропускных способностей дуг. Длина каждого массива равна количеству дуг в графе.
Для каждого i дуга i идет от start_nodes[i]
до end_nodes[i]
, а ее пропускная способность задается capacities[i]
. В следующем разделе показано, как создавать дуги, используя эти данные.
Питон
# Define three parallel arrays: start_nodes, end_nodes, and the capacities # between each pair. For instance, the arc from node 0 to node 1 has a # capacity of 20. start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3]) end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4]) capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20])
С++
// Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3}; std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4}; std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20};
Ява
// Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3}; int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4}; int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20};
С#
// Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 }; int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 }; int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 };
Добавьте дуги
Для каждого начального узла и конечного узла вы создаете дугу от начального узла до конечного узла с заданной емкостью, используя метод AddArcWithCapacity . Возможности являются ограничениями для проблемы.
Питон
# Add arcs in bulk. # note: we could have used add_arc_with_capacity(start, end, capacity) all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities)
С++
// Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]); }
Ява
// Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) { throw new Exception("Internal error"); } }
С#
// Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) throw new Exception("Internal error"); }
Вызов решателя
Теперь, когда все дуги определены, остается только вызвать решатель и отобразить результаты. Вы вызываете метод Solve()
, предоставляя источник (0) и приемник (4).
Питон
# Find the maximum flow between node 0 and node 4. status = smf.solve(0, 4)
С++
// Find the maximum flow between node 0 and node 4. int status = max_flow.Solve(0, 4);
Ява
// Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.solve(0, 4);
С#
// Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.Solve(0, 4);
Отображение результатов
Теперь вы можете отображать поток по каждой дуге.
Питон
if status != smf.OPTIMAL: print("There was an issue with the max flow input.") print(f"Status: {status}") exit(1) print("Max flow:", smf.optimal_flow()) print("") print(" Arc Flow / Capacity") solution_flows = smf.flows(all_arcs) for arc, flow, capacity in zip(all_arcs, solution_flows, capacities): print(f"{smf.tail(arc)} / {smf.head(arc)} {flow:3} / {capacity:3}") print("Source side min-cut:", smf.get_source_side_min_cut()) print("Sink side min-cut:", smf.get_sink_side_min_cut())
С++
if (status == MaxFlow::OPTIMAL) { LOG(INFO) << "Max flow: " << max_flow.OptimalFlow(); LOG(INFO) << ""; LOG(INFO) << " Arc Flow / Capacity"; for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) { LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << " " << max_flow.Flow(i) << " / " << max_flow.Capacity(i); } } else { LOG(INFO) << "Solving the max flow problem failed. Solver status: " << status; }
Ява
if (status == MaxFlow.Status.OPTIMAL) { System.out.println("Max. flow: " + maxFlow.getOptimalFlow()); System.out.println(); System.out.println(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.getNumArcs(); ++i) { System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + " " + maxFlow.getFlow(i) + " / " + maxFlow.getCapacity(i)); } } else { System.out.println("Solving the max flow problem failed. Solver status: " + status); }
С#
if (status == MaxFlow.Status.OPTIMAL) { Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow()); Console.WriteLine(""); Console.WriteLine(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.NumArcs(); ++i) { Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + " " + string.Format("{0,3}", maxFlow.Flow(i)) + " / " + string.Format("{0,3}", maxFlow.Capacity(i))); } } else { Console.WriteLine("Solving the max flow problem failed. Solver status: " + status); }
Вот вывод программы:
Max flow: 60 Arc Flow / Capacity 0 -> 1 20 / 20 0 -> 2 30 / 30 0 -> 3 10 / 10 1 -> 2 0 / 40 1 -> 4 20 / 30 2 -> 3 10 / 10 2 -> 4 20 / 20 3 -> 2 0 / 5 3 -> 4 20 / 20 Source side min-cut: [0] Sink side min-cut: [4, 1]
Величины потока по каждой дуге отображаются в разделе Flow
.
Полные программы
Собрав все это вместе, вот полные программы.
Питон
"""From Taha 'Introduction to Operations Research', example 6.4-2.""" import numpy as np from ortools.graph.python import max_flow def main(): """MaxFlow simple interface example.""" # Instantiate a SimpleMaxFlow solver. smf = max_flow.SimpleMaxFlow() # Define three parallel arrays: start_nodes, end_nodes, and the capacities # between each pair. For instance, the arc from node 0 to node 1 has a # capacity of 20. start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3]) end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4]) capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20]) # Add arcs in bulk. # note: we could have used add_arc_with_capacity(start, end, capacity) all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities) # Find the maximum flow between node 0 and node 4. status = smf.solve(0, 4) if status != smf.OPTIMAL: print("There was an issue with the max flow input.") print(f"Status: {status}") exit(1) print("Max flow:", smf.optimal_flow()) print("") print(" Arc Flow / Capacity") solution_flows = smf.flows(all_arcs) for arc, flow, capacity in zip(all_arcs, solution_flows, capacities): print(f"{smf.tail(arc)} / {smf.head(arc)} {flow:3} / {capacity:3}") print("Source side min-cut:", smf.get_source_side_min_cut()) print("Sink side min-cut:", smf.get_sink_side_min_cut()) if __name__ == "__main__": main()
С++
// From Taha 'Introduction to Operations Research', example 6.4-2.""" #include <cstdint> #include <vector> #include "ortools/graph/max_flow.h" namespace operations_research { // MaxFlow simple interface example. void SimpleMaxFlowProgram() { // Instantiate a SimpleMaxFlow solver. SimpleMaxFlow max_flow; // Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3}; std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4}; std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20}; // Add each arc. for (int i = 0; i < start_nodes.size(); ++i) { max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]); } // Find the maximum flow between node 0 and node 4. int status = max_flow.Solve(0, 4); if (status == MaxFlow::OPTIMAL) { LOG(INFO) << "Max flow: " << max_flow.OptimalFlow(); LOG(INFO) << ""; LOG(INFO) << " Arc Flow / Capacity"; for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) { LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << " " << max_flow.Flow(i) << " / " << max_flow.Capacity(i); } } else { LOG(INFO) << "Solving the max flow problem failed. Solver status: " << status; } } } // namespace operations_research int main() { operations_research::SimpleMaxFlowProgram(); return EXIT_SUCCESS; }
Ява
package com.google.ortools.graph.samples; import com.google.ortools.Loader; import com.google.ortools.graph.MaxFlow; /** Minimal MaxFlow program. */ public final class SimpleMaxFlowProgram { public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); // Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow(); // Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3}; int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4}; int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20}; // Add each arc. for (int i = 0; i < startNodes.length; ++i) { int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) { throw new Exception("Internal error"); } } // Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.solve(0, 4); if (status == MaxFlow.Status.OPTIMAL) { System.out.println("Max. flow: " + maxFlow.getOptimalFlow()); System.out.println(); System.out.println(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.getNumArcs(); ++i) { System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + " " + maxFlow.getFlow(i) + " / " + maxFlow.getCapacity(i)); } } else { System.out.println("Solving the max flow problem failed. Solver status: " + status); } } private SimpleMaxFlowProgram() {} }
С#
// From Taha 'Introduction to Operations Research', example 6.4-2. using System; using Google.OrTools.Graph; public class SimpleMaxFlowProgram { static void Main() { // Instantiate a SimpleMaxFlow solver. MaxFlow maxFlow = new MaxFlow(); // Define three parallel arrays: start_nodes, end_nodes, and the capacities // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 20. // From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 }; int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 }; int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 }; // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]); if (arc != i) throw new Exception("Internal error"); } // Find the maximum flow between node 0 and node 4. MaxFlow.Status status = maxFlow.Solve(0, 4); if (status == MaxFlow.Status.OPTIMAL) { Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow()); Console.WriteLine(""); Console.WriteLine(" Arc Flow / Capacity"); for (int i = 0; i < maxFlow.NumArcs(); ++i) { Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + " " + string.Format("{0,3}", maxFlow.Flow(i)) + " / " + string.Format("{0,3}", maxFlow.Capacity(i))); } } else { Console.WriteLine("Solving the max flow problem failed. Solver status: " + status); } } }