Flux de coûts minimaux

Le coût minimal (coût minimal) est étroitement lié au problème de débit maximal. problème de flux, dans lequel chaque arc du graphique a un coût unitaire pour le transport du contenu. Le problème est de trouver un flux avec le coût total le plus faible.

Le problème de flux de coût minimal a également des nœuds spéciaux, appelés nœuds d'approvisionnement ou de demande qui sont semblables à la source et au récepteur problème de débit maximal. Les matériaux sont transportés des nœuds d'approvisionnement aux nœuds de demande.

  • Au niveau d'un nœud d'approvisionnement, une quantité positive (l'offre) est ajoutée au le flux. Une fourniture peut représenter la production sur ce nœud, par exemple.
  • Au niveau d'un nœud de demande, un montant négatif (la demande) est prélevé à distance du flux. Une demande peut représenter de la consommation sur ce nœud, par à titre d'exemple.

Pour plus de commodité, nous partons du principe que tous les nœuds, à l'exception des nœuds d'offre ou de demande, n'ont aucune offre (ni demande).

Pour le problème de flux de coût minimal, nous utilisons la règle de conservation de flux suivante : qui tient compte des stocks et des demandes:

Le graphique ci-dessous illustre un problème de flux de coûts minimal. Les arcs sont étiquetés avec des paires de nombres: le premier chiffre la capacité et le second représente le coût. Les chiffres entre parenthèses à côté des nœuds représentent les stocks ou les demandes. Nœud 0 est un nœud d'approvisionnement avec l'offre 20, tandis que les nœuds 3 et 4 sont des nœuds de demande, avec exige respectivement -5 et -15.

Graphique du flux des coûts réseau

Importer les bibliothèques

Le code suivant importe la bibliothèque requise.

Python

import numpy as np

from ortools.graph.python import min_cost_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

C#

using System;
using Google.OrTools.Graph;

Déclarer le résolveur

Pour résoudre le problème, nous utilisons SimpleMinCostFlow à la résolution d'un problème.

Python

# Instantiate a SimpleMinCostFlow solver.
smcf = min_cost_flow.SimpleMinCostFlow()

C++

// Instantiate a SimpleMinCostFlow solver.
SimpleMinCostFlow min_cost_flow;

Java

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

C#

// Instantiate a SimpleMinCostFlow solver.
MinCostFlow minCostFlow = new MinCostFlow();

Définir les données

Le code suivant définit les données du problème. Dans ce cas, il y a quatre tableaux pour les nœuds de départ, les nœuds de fin, les capacités et les coûts unitaires. Encore une fois, la longueur des tableaux est le nombre d'arcs dans le graphe.

Python

# Define four parallel arrays: sources, destinations, capacities,
# and unit costs between each pair. For instance, the arc from node 0
# to node 1 has a capacity of 15.
start_nodes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 4])
end_nodes = np.array([1, 2, 2, 3, 4, 3, 4, 4, 2])
capacities = np.array([15, 8, 20, 4, 10, 15, 4, 20, 5])
unit_costs = np.array([4, 4, 2, 2, 6, 1, 3, 2, 3])

# Define an array of supplies at each node.
supplies = [20, 0, 0, -5, -15]

C++

// Define four parallel arrays: sources, destinations, capacities,
// and unit costs between each pair. For instance, the arc from node 0
// to node 1 has a capacity of 15.
std::vector<int64_t> start_nodes = {0, 0, 1, 1, 1, 2, 2, 3, 4};
std::vector<int64_t> end_nodes = {1, 2, 2, 3, 4, 3, 4, 4, 2};
std::vector<int64_t> capacities = {15, 8, 20, 4, 10, 15, 4, 20, 5};
std::vector<int64_t> unit_costs = {4, 4, 2, 2, 6, 1, 3, 2, 3};

// Define an array of supplies at each node.
std::vector<int64_t> supplies = {20, 0, 0, -5, -15};

Java

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 15.
// Problem taken From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = new int[] {0, 0, 1, 1, 1, 2, 2, 3, 4};
int[] endNodes = new int[] {1, 2, 2, 3, 4, 3, 4, 4, 2};
int[] capacities = new int[] {15, 8, 20, 4, 10, 15, 4, 20, 5};
int[] unitCosts = new int[] {4, 4, 2, 2, 6, 1, 3, 2, 3};

// Define an array of supplies at each node.
int[] supplies = new int[] {20, 0, 0, -5, -15};

C#

// Define four parallel arrays: sources, destinations, capacities, and unit costs
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 15.
// Problem taken From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = { 0, 0, 1, 1, 1, 2, 2, 3, 4 };
int[] endNodes = { 1, 2, 2, 3, 4, 3, 4, 4, 2 };
int[] capacities = { 15, 8, 20, 4, 10, 15, 4, 20, 5 };
int[] unitCosts = { 4, 4, 2, 2, 6, 1, 3, 2, 3 };

// Define an array of supplies at each node.
int[] supplies = { 20, 0, 0, -5, -15 };

Ajouter les arcs

Pour chaque nœud de départ et nœud final, nous créons un arc du nœud de début à celui de fin. avec la capacité et le coût unitaire donnés, à l'aide de la méthode AddArcWithCapacityAndUnitCost.

Le résolveur SetNodeSupply crée un vecteur d'approvisionnement pour les nœuds.

Python

# Add arcs, capacities and costs in bulk using numpy.
all_arcs = smcf.add_arcs_with_capacity_and_unit_cost(
    start_nodes, end_nodes, capacities, unit_costs
)

# Add supply for each nodes.
smcf.set_nodes_supplies(np.arange(0, len(supplies)), supplies)

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
      start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
  if (arc != i) LOG(FATAL) << "Internal error";
}

// Add node supplies.
for (int i = 0; i < supplies.size(); ++i) {
  min_cost_flow.SetNodeSupply(i, supplies[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = minCostFlow.addArcWithCapacityAndUnitCost(
      startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

// Add node supplies.
for (int i = 0; i < supplies.length; ++i) {
  minCostFlow.setNodeSupply(i, supplies[i]);
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc =
        minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

// Add node supplies.
for (int i = 0; i < supplies.Length; ++i)
{
    minCostFlow.SetNodeSupply(i, supplies[i]);
}

Appeler le résolveur

Maintenant que tous les arcs ont été définis, il ne reste plus qu'à appeler et affiche les résultats. Nous appelons la méthode Solve().

Python

# Find the min cost flow.
status = smcf.solve()

C++

// Find the min cost flow.
int status = min_cost_flow.Solve();

Java

// Find the min cost flow.
MinCostFlowBase.Status status = minCostFlow.solve();

C#

// Find the min cost flow.
MinCostFlow.Status status = minCostFlow.Solve();

Afficher les résultats

Nous pouvons maintenant afficher le flux et le coût pour chaque arc.

Python

if status != smcf.OPTIMAL:
    print("There was an issue with the min cost flow input.")
    print(f"Status: {status}")
    exit(1)
print(f"Minimum cost: {smcf.optimal_cost()}")
print("")
print(" Arc    Flow / Capacity Cost")
solution_flows = smcf.flows(all_arcs)
costs = solution_flows * unit_costs
for arc, flow, cost in zip(all_arcs, solution_flows, costs):
    print(
        f"{smcf.tail(arc):1} -> {smcf.head(arc)}  {flow:3}  / {smcf.capacity(arc):3}       {cost}"
    )

C++

if (status == MinCostFlow::OPTIMAL) {
  LOG(INFO) << "Minimum cost flow: " << min_cost_flow.OptimalCost();
  LOG(INFO) << "";
  LOG(INFO) << " Arc   Flow / Capacity  Cost";
  for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
    int64_t cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i);
    LOG(INFO) << min_cost_flow.Tail(i) << " -> " << min_cost_flow.Head(i)
              << "  " << min_cost_flow.Flow(i) << "  / "
              << min_cost_flow.Capacity(i) << "       " << cost;
  }
} else {
  LOG(INFO) << "Solving the min cost flow problem failed. Solver status: "
            << status;
}

Java

if (status == MinCostFlow.Status.OPTIMAL) {
  System.out.println("Minimum cost: " + minCostFlow.getOptimalCost());
  System.out.println();
  System.out.println(" Edge   Flow / Capacity  Cost");
  for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
    long cost = minCostFlow.getFlow(i) * minCostFlow.getUnitCost(i);
    System.out.println(minCostFlow.getTail(i) + " -> " + minCostFlow.getHead(i) + "  "
        + minCostFlow.getFlow(i) + "  / " + minCostFlow.getCapacity(i) + "       " + cost);
  }
} else {
  System.out.println("Solving the min cost flow problem failed.");
  System.out.println("Solver status: " + status);
}

C#

if (status == MinCostFlow.Status.OPTIMAL)
{
    Console.WriteLine("Minimum cost: " + minCostFlow.OptimalCost());
    Console.WriteLine("");
    Console.WriteLine(" Edge   Flow / Capacity  Cost");
    for (int i = 0; i < minCostFlow.NumArcs(); ++i)
    {
        long cost = minCostFlow.Flow(i) * minCostFlow.UnitCost(i);
        Console.WriteLine(minCostFlow.Tail(i) + " -> " + minCostFlow.Head(i) + "  " +
                          string.Format("{0,3}", minCostFlow.Flow(i)) + "  / " +
                          string.Format("{0,3}", minCostFlow.Capacity(i)) + "       " +
                          string.Format("{0,3}", cost));
    }
}
else
{
    Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + status);
}

Voici la sortie du programme Python:

Minimum cost: 150

  Arc    Flow / Capacity  Cost
0 -> 1    12  /  15        48
0 -> 2     8  /   8        32
1 -> 2     8  /  20        16
1 -> 3     4  /   4         8
1 -> 4     0  /  10         0
2 -> 3    12  /  15        12
2 -> 4     4  /   4        12
3 -> 4    11  /  20        22
4 -> 2     0  /   5         0

Terminer les programmes

En résumé, voici les programmes complets.

Python

"""From Bradley, Hax and Maganti, 'Applied Mathematical Programming', figure 8.1."""
import numpy as np

from ortools.graph.python import min_cost_flow


def main():
    """MinCostFlow simple interface example."""
    # Instantiate a SimpleMinCostFlow solver.
    smcf = min_cost_flow.SimpleMinCostFlow()

    # Define four parallel arrays: sources, destinations, capacities,
    # and unit costs between each pair. For instance, the arc from node 0
    # to node 1 has a capacity of 15.
    start_nodes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 4])
    end_nodes = np.array([1, 2, 2, 3, 4, 3, 4, 4, 2])
    capacities = np.array([15, 8, 20, 4, 10, 15, 4, 20, 5])
    unit_costs = np.array([4, 4, 2, 2, 6, 1, 3, 2, 3])

    # Define an array of supplies at each node.
    supplies = [20, 0, 0, -5, -15]

    # Add arcs, capacities and costs in bulk using numpy.
    all_arcs = smcf.add_arcs_with_capacity_and_unit_cost(
        start_nodes, end_nodes, capacities, unit_costs
    )

    # Add supply for each nodes.
    smcf.set_nodes_supplies(np.arange(0, len(supplies)), supplies)

    # Find the min cost flow.
    status = smcf.solve()

    if status != smcf.OPTIMAL:
        print("There was an issue with the min cost flow input.")
        print(f"Status: {status}")
        exit(1)
    print(f"Minimum cost: {smcf.optimal_cost()}")
    print("")
    print(" Arc    Flow / Capacity Cost")
    solution_flows = smcf.flows(all_arcs)
    costs = solution_flows * unit_costs
    for arc, flow, cost in zip(all_arcs, solution_flows, costs):
        print(
            f"{smcf.tail(arc):1} -> {smcf.head(arc)}  {flow:3}  / {smcf.capacity(arc):3}       {cost}"
        )


if __name__ == "__main__":
    main()

C++

// From Bradley, Hax and Maganti, 'Applied Mathematical Programming', figure 8.1
#include <cstdint>
#include <vector>

#include "ortools/graph/min_cost_flow.h"

namespace operations_research {
// MinCostFlow simple interface example.
void SimpleMinCostFlowProgram() {
  // Instantiate a SimpleMinCostFlow solver.
  SimpleMinCostFlow min_cost_flow;

  // Define four parallel arrays: sources, destinations, capacities,
  // and unit costs between each pair. For instance, the arc from node 0
  // to node 1 has a capacity of 15.
  std::vector<int64_t> start_nodes = {0, 0, 1, 1, 1, 2, 2, 3, 4};
  std::vector<int64_t> end_nodes = {1, 2, 2, 3, 4, 3, 4, 4, 2};
  std::vector<int64_t> capacities = {15, 8, 20, 4, 10, 15, 4, 20, 5};
  std::vector<int64_t> unit_costs = {4, 4, 2, 2, 6, 1, 3, 2, 3};

  // Define an array of supplies at each node.
  std::vector<int64_t> supplies = {20, 0, 0, -5, -15};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    int arc = min_cost_flow.AddArcWithCapacityAndUnitCost(
        start_nodes[i], end_nodes[i], capacities[i], unit_costs[i]);
    if (arc != i) LOG(FATAL) << "Internal error";
  }

  // Add node supplies.
  for (int i = 0; i < supplies.size(); ++i) {
    min_cost_flow.SetNodeSupply(i, supplies[i]);
  }

  // Find the min cost flow.
  int status = min_cost_flow.Solve();

  if (status == MinCostFlow::OPTIMAL) {
    LOG(INFO) << "Minimum cost flow: " << min_cost_flow.OptimalCost();
    LOG(INFO) << "";
    LOG(INFO) << " Arc   Flow / Capacity  Cost";
    for (std::size_t i = 0; i < min_cost_flow.NumArcs(); ++i) {
      int64_t cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i);
      LOG(INFO) << min_cost_flow.Tail(i) << " -> " << min_cost_flow.Head(i)
                << "  " << min_cost_flow.Flow(i) << "  / "
                << min_cost_flow.Capacity(i) << "       " << cost;
    }
  } else {
    LOG(INFO) << "Solving the min cost flow problem failed. Solver status: "
              << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::SimpleMinCostFlowProgram();
  return EXIT_SUCCESS;
}

Java

// From Bradley, Hax, and Maganti, 'Applied Mathematical Programming', figure 8.1.
package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MinCostFlow;
import com.google.ortools.graph.MinCostFlowBase;

/** Minimal MinCostFlow program. */
public class SimpleMinCostFlowProgram {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMinCostFlow solver.
    MinCostFlow minCostFlow = new MinCostFlow();

    // Define four parallel arrays: sources, destinations, capacities, and unit costs
    // between each pair. For instance, the arc from node 0 to node 1 has a
    // capacity of 15.
    // Problem taken From Taha's 'Introduction to Operations Research',
    // example 6.4-2.
    int[] startNodes = new int[] {0, 0, 1, 1, 1, 2, 2, 3, 4};
    int[] endNodes = new int[] {1, 2, 2, 3, 4, 3, 4, 4, 2};
    int[] capacities = new int[] {15, 8, 20, 4, 10, 15, 4, 20, 5};
    int[] unitCosts = new int[] {4, 4, 2, 2, 6, 1, 3, 2, 3};

    // Define an array of supplies at each node.
    int[] supplies = new int[] {20, 0, 0, -5, -15};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = minCostFlow.addArcWithCapacityAndUnitCost(
          startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Add node supplies.
    for (int i = 0; i < supplies.length; ++i) {
      minCostFlow.setNodeSupply(i, supplies[i]);
    }

    // Find the min cost flow.
    MinCostFlowBase.Status status = minCostFlow.solve();

    if (status == MinCostFlow.Status.OPTIMAL) {
      System.out.println("Minimum cost: " + minCostFlow.getOptimalCost());
      System.out.println();
      System.out.println(" Edge   Flow / Capacity  Cost");
      for (int i = 0; i < minCostFlow.getNumArcs(); ++i) {
        long cost = minCostFlow.getFlow(i) * minCostFlow.getUnitCost(i);
        System.out.println(minCostFlow.getTail(i) + " -> " + minCostFlow.getHead(i) + "  "
            + minCostFlow.getFlow(i) + "  / " + minCostFlow.getCapacity(i) + "       " + cost);
      }
    } else {
      System.out.println("Solving the min cost flow problem failed.");
      System.out.println("Solver status: " + status);
    }
  }

  private SimpleMinCostFlowProgram() {}
}

C#

// From Bradley, Hax, and Magnanti, 'Applied Mathematical Programming', figure 8.1.
using System;
using Google.OrTools.Graph;

public class SimpleMinCostFlowProgram
{
    static void Main()
    {
        // Instantiate a SimpleMinCostFlow solver.
        MinCostFlow minCostFlow = new MinCostFlow();

        // Define four parallel arrays: sources, destinations, capacities, and unit costs
        // between each pair. For instance, the arc from node 0 to node 1 has a
        // capacity of 15.
        // Problem taken From Taha's 'Introduction to Operations Research',
        // example 6.4-2.
        int[] startNodes = { 0, 0, 1, 1, 1, 2, 2, 3, 4 };
        int[] endNodes = { 1, 2, 2, 3, 4, 3, 4, 4, 2 };
        int[] capacities = { 15, 8, 20, 4, 10, 15, 4, 20, 5 };
        int[] unitCosts = { 4, 4, 2, 2, 6, 1, 3, 2, 3 };

        // Define an array of supplies at each node.
        int[] supplies = { 20, 0, 0, -5, -15 };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc =
                minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Add node supplies.
        for (int i = 0; i < supplies.Length; ++i)
        {
            minCostFlow.SetNodeSupply(i, supplies[i]);
        }

        // Find the min cost flow.
        MinCostFlow.Status status = minCostFlow.Solve();

        if (status == MinCostFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Minimum cost: " + minCostFlow.OptimalCost());
            Console.WriteLine("");
            Console.WriteLine(" Edge   Flow / Capacity  Cost");
            for (int i = 0; i < minCostFlow.NumArcs(); ++i)
            {
                long cost = minCostFlow.Flow(i) * minCostFlow.UnitCost(i);
                Console.WriteLine(minCostFlow.Tail(i) + " -> " + minCostFlow.Head(i) + "  " +
                                  string.Format("{0,3}", minCostFlow.Flow(i)) + "  / " +
                                  string.Format("{0,3}", minCostFlow.Capacity(i)) + "       " +
                                  string.Format("{0,3}", cost));
            }
        }
        else
        {
            Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + status);
        }
    }
}