पिछले सेक्शन में दिखाया गया था कि कुछ वैरिएबल की मदद से MIP को कैसे हल किया जाता है और कंस्ट्रेंट, जो अलग-अलग परिभाषित होते हैं. बड़ी समस्याओं के लिए, सरणियों पर लूप करके वैरिएबल और कंस्ट्रेंट को तय करना आसान है. कॉन्टेंट बनाने अगला उदाहरण इसे दिखाता है.
उदाहरण
इस उदाहरण में, हम नीचे दी गई समस्या को हल करेंगे.
ज़्यादा से ज़्यादा 7x1 + 8x2 + 2x3 + 9x4 + 6x5 पर ये शर्तें लागू होंगी:
- 5 x1 से ज़्यादा 7 x2 से ज़्यादा 9 x3 से ज़्यादा 2 x4 से ज़्यादा 1 x5 &लेक; 250
- 18 x1 + 4 x2 - 9 x3 से ज़्यादा 10 x4 से ज़्यादा 12 x5 ≤ 285
- 4 x1 + 7 x2 से ज़्यादा 3 x3 + 8 x4 से ज़्यादा 5 x5 ≤ 211
- 5 x1 से ज़्यादा 13 x2 + 16 x3 + 3 x4 - 7 x5 &लेक; 315
जहां x1, x2, ..., x5 नेगेटिव नहीं होते हैं पूर्णांक.
नीचे दिए गए सेक्शन में, इस समस्या को हल करने वाले प्रोग्राम दिए गए हैं. प्रोग्राम पिछले MIP उदाहरण वाले तरीके का ही इस्तेमाल करें, लेकिन हैं, तो इस मामले में उन्हें लूप में अरे की वैल्यू पर लागू किया जा सकता है.
सॉल्वर के बारे में बताओ
किसी भी MIP प्रोग्राम में, लीनियर सॉल्वर रैपर और MIP सॉल्वर का एलान करना, जैसा कि पिछले MIP का उदाहरण.
डेटा बनाना
यह कोड, उदाहरण के लिए डेटा वाला कलेक्शन बनाता है: कंस्ट्रेंट और मकसद फ़ंक्शन के लिए वैरिएबल गुणांक, और शर्तों को पूरा करना.
Python
def create_data_model(): """Stores the data for the problem.""" data = {} data["constraint_coeffs"] = [ [5, 7, 9, 2, 1], [18, 4, -9, 10, 12], [4, 7, 3, 8, 5], [5, 13, 16, 3, -7], ] data["bounds"] = [250, 285, 211, 315] data["obj_coeffs"] = [7, 8, 2, 9, 6] data["num_vars"] = 5 data["num_constraints"] = 4 return data
C++
struct DataModel { const std::vector<std::vector<double>> constraint_coeffs{ {5, 7, 9, 2, 1}, {18, 4, -9, 10, 12}, {4, 7, 3, 8, 5}, {5, 13, 16, 3, -7}, }; const std::vector<double> bounds{250, 285, 211, 315}; const std::vector<double> obj_coeffs{7, 8, 2, 9, 6}; const int num_vars = 5; const int num_constraints = 4; };
Java
static class DataModel { public final double[][] constraintCoeffs = { {5, 7, 9, 2, 1}, {18, 4, -9, 10, 12}, {4, 7, 3, 8, 5}, {5, 13, 16, 3, -7}, }; public final double[] bounds = {250, 285, 211, 315}; public final double[] objCoeffs = {7, 8, 2, 9, 6}; public final int numVars = 5; public final int numConstraints = 4; }
C#
class DataModel { public double[,] ConstraintCoeffs = { { 5, 7, 9, 2, 1 }, { 18, 4, -9, 10, 12 }, { 4, 7, 3, 8, 5 }, { 5, 13, 16, 3, -7 }, }; public double[] Bounds = { 250, 285, 211, 315 }; public double[] ObjCoeffs = { 7, 8, 2, 9, 6 }; public int NumVars = 5; public int NumConstraints = 4; }
डेटा को इंस्टैंशिएट करें
यह कोड, डेटा मॉडल को इंस्टैंशिएट करता है.
Python
data = create_data_model()
C++
DataModel data;
Java
final DataModel data = new DataModel();
C#
DataModel data = new DataModel();
सॉल्वर को इंस्टैंशिएट करें
यह कोड, सॉल्वर को इंस्टैंशिएट करता है.
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
// Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
वैरिएबल तय करना
यह कोड, लूप में उदाहरण के लिए वैरिएबल के बारे में बताता है. बड़े साइज़ के लिए है, तो यह वैरिएबल को अलग-अलग परिभाषित करने की तुलना में ज़्यादा आसान है, जैसा कि पिछला उदाहरण.
Python
infinity = solver.infinity() x = {} for j in range(data["num_vars"]): x[j] = solver.IntVar(0, infinity, "x[%i]" % j) print("Number of variables =", solver.NumVariables())
C++
const double infinity = solver->infinity(); // x[j] is an array of non-negative, integer variables. std::vector<const MPVariable*> x(data.num_vars); for (int j = 0; j < data.num_vars; ++j) { x[j] = solver->MakeIntVar(0.0, infinity, ""); } LOG(INFO) << "Number of variables = " << solver->NumVariables();
Java
double infinity = java.lang.Double.POSITIVE_INFINITY; MPVariable[] x = new MPVariable[data.numVars]; for (int j = 0; j < data.numVars; ++j) { x[j] = solver.makeIntVar(0.0, infinity, ""); } System.out.println("Number of variables = " + solver.numVariables());
C#
Variable[] x = new Variable[data.NumVars]; for (int j = 0; j < data.NumVars; j++) { x[j] = solver.MakeIntVar(0.0, double.PositiveInfinity, $"x_{j}"); } Console.WriteLine("Number of variables = " + solver.NumVariables());
सीमाएं तय करना
यह कोड, तरीके का इस्तेमाल करके, उदाहरण के लिए कंस्ट्रेंट बनाता है
MakeRowConstraint
(या कोडिंग की भाषा के हिसाब से कुछ वैरिएंट). कॉन्टेंट बनाने
इस तरीके के पहले दो आर्ग्युमेंट,
कंस्ट्रेंट. तीसरा आर्ग्युमेंट, कंस्ट्रेंट का नाम होना ज़रूरी नहीं है.
हर कंस्ट्रेंट के लिए, वैरिएबल के गुणांक तय करने के लिए
तरीका SetCoefficient
. यह तरीका, वैरिएबल का गुणांक असाइन करता है
कंस्ट्रेंट i
में मौजूद x[j]
, अरे की [i][j]
एंट्री होने के लिए
constraint_coeffs
.
Python
for i in range(data["num_constraints"]): constraint = solver.RowConstraint(0, data["bounds"][i], "") for j in range(data["num_vars"]): constraint.SetCoefficient(x[j], data["constraint_coeffs"][i][j]) print("Number of constraints =", solver.NumConstraints()) # In Python, you can also set the constraints as follows. # for i in range(data['num_constraints']): # constraint_expr = \ # [data['constraint_coeffs'][i][j] * x[j] for j in range(data['num_vars'])] # solver.Add(sum(constraint_expr) <= data['bounds'][i])
C++
// Create the constraints. for (int i = 0; i < data.num_constraints; ++i) { MPConstraint* constraint = solver->MakeRowConstraint(0, data.bounds[i], ""); for (int j = 0; j < data.num_vars; ++j) { constraint->SetCoefficient(x[j], data.constraint_coeffs[i][j]); } } LOG(INFO) << "Number of constraints = " << solver->NumConstraints();
Java
// Create the constraints. for (int i = 0; i < data.numConstraints; ++i) { MPConstraint constraint = solver.makeConstraint(0, data.bounds[i], ""); for (int j = 0; j < data.numVars; ++j) { constraint.setCoefficient(x[j], data.constraintCoeffs[i][j]); } } System.out.println("Number of constraints = " + solver.numConstraints());
C#
for (int i = 0; i < data.NumConstraints; ++i) { Constraint constraint = solver.MakeConstraint(0, data.Bounds[i], ""); for (int j = 0; j < data.NumVars; ++j) { constraint.SetCoefficient(x[j], data.ConstraintCoeffs[i, j]); } } Console.WriteLine("Number of constraints = " + solver.NumConstraints());
मकसद तय करना
उदाहरण के लिए, यह कोड मकसद फ़ंक्शन के बारे में बताता है. कॉन्टेंट बनाने
SetCoefficient
तरीका मकसद के लिए गुणांक असाइन करता है, जबकि
SetMaximization
इसे सबसे बड़ी समस्या के तौर पर बताता है.
Python
objective = solver.Objective() for j in range(data["num_vars"]): objective.SetCoefficient(x[j], data["obj_coeffs"][j]) objective.SetMaximization() # In Python, you can also set the objective as follows. # obj_expr = [data['obj_coeffs'][j] * x[j] for j in range(data['num_vars'])] # solver.Maximize(solver.Sum(obj_expr))
C++
// Create the objective function. MPObjective* const objective = solver->MutableObjective(); for (int j = 0; j < data.num_vars; ++j) { objective->SetCoefficient(x[j], data.obj_coeffs[j]); } objective->SetMaximization();
Java
MPObjective objective = solver.objective(); for (int j = 0; j < data.numVars; ++j) { objective.setCoefficient(x[j], data.objCoeffs[j]); } objective.setMaximization();
C#
Objective objective = solver.Objective(); for (int j = 0; j < data.NumVars; ++j) { objective.SetCoefficient(x[j], data.ObjCoeffs[j]); } objective.SetMaximization();
सॉल्वर को कॉल करें
यहां दिया गया कोड, सॉल्वर को कॉल करता है.
Python
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve()
C++
const MPSolver::ResultStatus result_status = solver->Solve();
Java
final MPSolver.ResultStatus resultStatus = solver.solve();
C#
Solver.ResultStatus resultStatus = solver.Solve();
समाधान दिखाएं
यह कोड, समाधान दिखाता है.
Python
if status == pywraplp.Solver.OPTIMAL: print("Objective value =", solver.Objective().Value()) for j in range(data["num_vars"]): print(x[j].name(), " = ", x[j].solution_value()) print() print(f"Problem solved in {solver.wall_time():d} milliseconds") print(f"Problem solved in {solver.iterations():d} iterations") print(f"Problem solved in {solver.nodes():d} branch-and-bound nodes") else: print("The problem does not have an optimal solution.")
C++
// Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution."; } LOG(INFO) << "Solution:"; LOG(INFO) << "Optimal objective value = " << objective->Value(); for (int j = 0; j < data.num_vars; ++j) { LOG(INFO) << "x[" << j << "] = " << x[j]->solution_value(); }
Java
// Check that the problem has an optimal solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Objective value = " + objective.value()); for (int j = 0; j < data.numVars; ++j) { System.out.println("x[" + j + "] = " + x[j].solutionValue()); } System.out.println(); System.out.println("Problem solved in " + solver.wallTime() + " milliseconds"); System.out.println("Problem solved in " + solver.iterations() + " iterations"); System.out.println("Problem solved in " + solver.nodes() + " branch-and-bound nodes"); } else { System.err.println("The problem does not have an optimal solution."); }
C#
// Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); return; } Console.WriteLine("Solution:"); Console.WriteLine("Optimal objective value = " + solver.Objective().Value()); for (int j = 0; j < data.NumVars; ++j) { Console.WriteLine("x[" + j + "] = " + x[j].SolutionValue()); }
यह रहा समस्या का समाधान.
Number of variables = 5 Number of constraints = 4 Objective value = 260.0 x[0] = 10.0 x[1] = 16.0 x[2] = 4.0 x[3] = 4.0 x[4] = 3.0 Problem solved in 29.000000 milliseconds Problem solved in 315 iterations Problem solved in 13 branch-and-bound nodes
प्रोग्राम पूरे करें
यहां सभी प्रोग्राम दिए गए हैं.
Python
from ortools.linear_solver import pywraplp def create_data_model(): """Stores the data for the problem.""" data = {} data["constraint_coeffs"] = [ [5, 7, 9, 2, 1], [18, 4, -9, 10, 12], [4, 7, 3, 8, 5], [5, 13, 16, 3, -7], ] data["bounds"] = [250, 285, 211, 315] data["obj_coeffs"] = [7, 8, 2, 9, 6] data["num_vars"] = 5 data["num_constraints"] = 4 return data def main(): data = create_data_model() # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return infinity = solver.infinity() x = {} for j in range(data["num_vars"]): x[j] = solver.IntVar(0, infinity, "x[%i]" % j) print("Number of variables =", solver.NumVariables()) for i in range(data["num_constraints"]): constraint = solver.RowConstraint(0, data["bounds"][i], "") for j in range(data["num_vars"]): constraint.SetCoefficient(x[j], data["constraint_coeffs"][i][j]) print("Number of constraints =", solver.NumConstraints()) # In Python, you can also set the constraints as follows. # for i in range(data['num_constraints']): # constraint_expr = \ # [data['constraint_coeffs'][i][j] * x[j] for j in range(data['num_vars'])] # solver.Add(sum(constraint_expr) <= data['bounds'][i]) objective = solver.Objective() for j in range(data["num_vars"]): objective.SetCoefficient(x[j], data["obj_coeffs"][j]) objective.SetMaximization() # In Python, you can also set the objective as follows. # obj_expr = [data['obj_coeffs'][j] * x[j] for j in range(data['num_vars'])] # solver.Maximize(solver.Sum(obj_expr)) print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print("Objective value =", solver.Objective().Value()) for j in range(data["num_vars"]): print(x[j].name(), " = ", x[j].solution_value()) print() print(f"Problem solved in {solver.wall_time():d} milliseconds") print(f"Problem solved in {solver.iterations():d} iterations") print(f"Problem solved in {solver.nodes():d} branch-and-bound nodes") else: print("The problem does not have an optimal solution.") if __name__ == "__main__": main()
C++
#include <memory> #include <vector> #include "ortools/linear_solver/linear_solver.h" namespace operations_research { struct DataModel { const std::vector<std::vector<double>> constraint_coeffs{ {5, 7, 9, 2, 1}, {18, 4, -9, 10, 12}, {4, 7, 3, 8, 5}, {5, 13, 16, 3, -7}, }; const std::vector<double> bounds{250, 285, 211, 315}; const std::vector<double> obj_coeffs{7, 8, 2, 9, 6}; const int num_vars = 5; const int num_constraints = 4; }; void MipVarArray() { DataModel data; // Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; } const double infinity = solver->infinity(); // x[j] is an array of non-negative, integer variables. std::vector<const MPVariable*> x(data.num_vars); for (int j = 0; j < data.num_vars; ++j) { x[j] = solver->MakeIntVar(0.0, infinity, ""); } LOG(INFO) << "Number of variables = " << solver->NumVariables(); // Create the constraints. for (int i = 0; i < data.num_constraints; ++i) { MPConstraint* constraint = solver->MakeRowConstraint(0, data.bounds[i], ""); for (int j = 0; j < data.num_vars; ++j) { constraint->SetCoefficient(x[j], data.constraint_coeffs[i][j]); } } LOG(INFO) << "Number of constraints = " << solver->NumConstraints(); // Create the objective function. MPObjective* const objective = solver->MutableObjective(); for (int j = 0; j < data.num_vars; ++j) { objective->SetCoefficient(x[j], data.obj_coeffs[j]); } objective->SetMaximization(); const MPSolver::ResultStatus result_status = solver->Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { LOG(FATAL) << "The problem does not have an optimal solution."; } LOG(INFO) << "Solution:"; LOG(INFO) << "Optimal objective value = " << objective->Value(); for (int j = 0; j < data.num_vars; ++j) { LOG(INFO) << "x[" << j << "] = " << x[j]->solution_value(); } } } // namespace operations_research int main(int argc, char** argv) { operations_research::MipVarArray(); return EXIT_SUCCESS; }
Java
package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; /** MIP example with a variable array. */ public class MipVarArray { static class DataModel { public final double[][] constraintCoeffs = { {5, 7, 9, 2, 1}, {18, 4, -9, 10, 12}, {4, 7, 3, 8, 5}, {5, 13, 16, 3, -7}, }; public final double[] bounds = {250, 285, 211, 315}; public final double[] objCoeffs = {7, 8, 2, 9, 6}; public final int numVars = 5; public final int numConstraints = 4; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); final DataModel data = new DataModel(); // Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; } double infinity = java.lang.Double.POSITIVE_INFINITY; MPVariable[] x = new MPVariable[data.numVars]; for (int j = 0; j < data.numVars; ++j) { x[j] = solver.makeIntVar(0.0, infinity, ""); } System.out.println("Number of variables = " + solver.numVariables()); // Create the constraints. for (int i = 0; i < data.numConstraints; ++i) { MPConstraint constraint = solver.makeConstraint(0, data.bounds[i], ""); for (int j = 0; j < data.numVars; ++j) { constraint.setCoefficient(x[j], data.constraintCoeffs[i][j]); } } System.out.println("Number of constraints = " + solver.numConstraints()); MPObjective objective = solver.objective(); for (int j = 0; j < data.numVars; ++j) { objective.setCoefficient(x[j], data.objCoeffs[j]); } objective.setMaximization(); final MPSolver.ResultStatus resultStatus = solver.solve(); // Check that the problem has an optimal solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Objective value = " + objective.value()); for (int j = 0; j < data.numVars; ++j) { System.out.println("x[" + j + "] = " + x[j].solutionValue()); } System.out.println(); System.out.println("Problem solved in " + solver.wallTime() + " milliseconds"); System.out.println("Problem solved in " + solver.iterations() + " iterations"); System.out.println("Problem solved in " + solver.nodes() + " branch-and-bound nodes"); } else { System.err.println("The problem does not have an optimal solution."); } } private MipVarArray() {} }
C#
using System; using Google.OrTools.LinearSolver; public class MipVarArray { class DataModel { public double[,] ConstraintCoeffs = { { 5, 7, 9, 2, 1 }, { 18, 4, -9, 10, 12 }, { 4, 7, 3, 8, 5 }, { 5, 13, 16, 3, -7 }, }; public double[] Bounds = { 250, 285, 211, 315 }; public double[] ObjCoeffs = { 7, 8, 2, 9, 6 }; public int NumVars = 5; public int NumConstraints = 4; } public static void Main() { DataModel data = new DataModel(); // Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; } Variable[] x = new Variable[data.NumVars]; for (int j = 0; j < data.NumVars; j++) { x[j] = solver.MakeIntVar(0.0, double.PositiveInfinity, $"x_{j}"); } Console.WriteLine("Number of variables = " + solver.NumVariables()); for (int i = 0; i < data.NumConstraints; ++i) { Constraint constraint = solver.MakeConstraint(0, data.Bounds[i], ""); for (int j = 0; j < data.NumVars; ++j) { constraint.SetCoefficient(x[j], data.ConstraintCoeffs[i, j]); } } Console.WriteLine("Number of constraints = " + solver.NumConstraints()); Objective objective = solver.Objective(); for (int j = 0; j < data.NumVars; ++j) { objective.SetCoefficient(x[j], data.ObjCoeffs[j]); } objective.SetMaximization(); Solver.ResultStatus resultStatus = solver.Solve(); // Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); return; } Console.WriteLine("Solution:"); Console.WriteLine("Optimal objective value = " + solver.Objective().Value()); for (int j = 0; j < data.NumVars; ++j) { Console.WriteLine("x[" + j + "] = " + x[j].SolutionValue()); } Console.WriteLine("\nAdvanced usage:"); Console.WriteLine("Problem solved in " + solver.WallTime() + " milliseconds"); Console.WriteLine("Problem solved in " + solver.Iterations() + " iterations"); Console.WriteLine("Problem solved in " + solver.Nodes() + " branch-and-bound nodes"); } }