Seperti masalah {i>multiple knapsack<i}, masalah pengemasan {i>bin<i} juga melibatkan mengemas barang-barang ke dalam tempat sampah. Namun, masalah pengemasan bin memiliki perbedaan objektif: menemukan {i>bin<i} paling sedikit yang dapat menampung semua item.
Berikut ini rangkuman perbedaan antara kedua masalah tersebut:
Masalah beberapa knapsack: Kemas satu {i>subset<i} item ke dalam jumlah yang tetap tempat sampah, dengan berbagai kapasitas, sehingga nilai total item yang dikemas adalah nilai maksimum.
Masalah pengemasan bin: Dengan banyaknya bin dengan kapasitas umum yang diperlukan, temukan paling sedikit yang dapat menampung semua item. Dalam masalah ini, item tidak ditetapkan nilai, karena tujuannya tidak melibatkan nilai.
Contoh berikutnya menunjukkan cara menyelesaikan masalah pengemasan bin.
Contoh
Dalam contoh ini, barang dengan berbagai berat harus dikemas ke dalam satu set tempat sampah dengan kapasitas yang sama. Dengan asumsi bahwa ada cukup {i>bin <i}untuk menampung semua item, masalahnya adalah untuk menemukan jumlah terkecil yang sudah cukup.
Bagian berikut menampilkan program yang dapat memecahkan masalah ini. Untuk yang lengkap program, lihat Program lengkap.
Contoh ini menggunakan Wrapper MPSolver.
Mengimpor library
Kode di bawah ini mengimpor library yang diperlukan.
Python
from ortools.linear_solver import pywraplp
C++
#include <iostream> #include <memory> #include <numeric> #include <ostream> #include <vector> #include "ortools/linear_solver/linear_expr.h" #include "ortools/linear_solver/linear_solver.h"
Java
import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable;
C#
using System; using Google.OrTools.LinearSolver;
Membuat data
Kode di bawah membuat data untuk contoh.
Python
def create_data_model(): """Create the data for the example.""" data = {} weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30] data["weights"] = weights data["items"] = list(range(len(weights))) data["bins"] = data["items"] data["bin_capacity"] = 100 return data
C++
struct DataModel { const std::vector<double> weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30}; const int num_items = weights.size(); const int num_bins = weights.size(); const int bin_capacity = 100; };
Java
static class DataModel { public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30}; public final int numItems = weights.length; public final int numBins = weights.length; public final int binCapacity = 100; }
C#
class DataModel { public static double[] Weights = { 48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30 }; public int NumItems = Weights.Length; public int NumBins = Weights.Length; public double BinCapacity = 100.0; }
Data tersebut meliputi:
weights
: Vektor yang berisi bobot item.bin_capacity
: Satu angka yang memberikan kapasitas bin.
Tidak ada nilai yang ditetapkan pada item karena tujuan meminimalkan jumlah bin tidak melibatkan nilai.
Perhatikan bahwa num_bins
ditetapkan ke jumlah item. Hal ini karena jika
soal memiliki solusi, maka bobot setiap item harus kurang dari atau sama
ke kapasitas bin. Dalam hal ini, jumlah {i>bin
<i}maksimum yang
mungkin Anda butuhkan adalah
jumlah item, karena Anda selalu dapat
meletakkan setiap item di tempat sampah yang terpisah.
Mendeklarasikan pemecah
Kode berikut mendeklarasikan pemecah.
Python
# Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return
C++
// Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; }
Java
// Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; }
C#
// Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; }
Membuat variabel
Kode berikut membuat variabel untuk program.
Python
# Variables # x[i, j] = 1 if item i is packed in bin j. x = {} for i in data["items"]: for j in data["bins"]: x[(i, j)] = solver.IntVar(0, 1, "x_%i_%i" % (i, j)) # y[j] = 1 if bin j is used. y = {} for j in data["bins"]: y[j] = solver.IntVar(0, 1, "y[%i]" % j)
C++
std::vector<std::vector<const MPVariable*>> x( data.num_items, std::vector<const MPVariable*>(data.num_bins)); for (int i = 0; i < data.num_items; ++i) { for (int j = 0; j < data.num_bins; ++j) { x[i][j] = solver->MakeIntVar(0.0, 1.0, ""); } } // y[j] = 1 if bin j is used. std::vector<const MPVariable*> y(data.num_bins); for (int j = 0; j < data.num_bins; ++j) { y[j] = solver->MakeIntVar(0.0, 1.0, ""); }
Java
MPVariable[][] x = new MPVariable[data.numItems][data.numBins]; for (int i = 0; i < data.numItems; ++i) { for (int j = 0; j < data.numBins; ++j) { x[i][j] = solver.makeIntVar(0, 1, ""); } } MPVariable[] y = new MPVariable[data.numBins]; for (int j = 0; j < data.numBins; ++j) { y[j] = solver.makeIntVar(0, 1, ""); }
C#
Variable[,] x = new Variable[data.NumItems, data.NumBins]; for (int i = 0; i < data.NumItems; i++) { for (int j = 0; j < data.NumBins; j++) { x[i, j] = solver.MakeIntVar(0, 1, $"x_{i}_{j}"); } } Variable[] y = new Variable[data.NumBins]; for (int j = 0; j < data.NumBins; j++) { y[j] = solver.MakeIntVar(0, 1, $"y_{j}"); }
Seperti dalam contoh beberapa knapsack, Anda menentukan array variabel x[(i,
j)]
, yang nilainya adalah 1 jika item i
ditempatkan di bin j
, dan 0 jika sebaliknya.
Untuk pengemasan bin, Anda juga menentukan array variabel, y[j]
, yang nilainya adalah 1
jika bin j
digunakan—yaitu, jika ada item yang dikemas di dalamnya—dan 0
sebaliknya. Jumlah y[j]
akan menjadi jumlah bin yang digunakan.
Menentukan batasan
Kode berikut menentukan batasan masalah:
Python
# Constraints # Each item must be in exactly one bin. for i in data["items"]: solver.Add(sum(x[i, j] for j in data["bins"]) == 1) # The amount packed in each bin cannot exceed its capacity. for j in data["bins"]: solver.Add( sum(x[(i, j)] * data["weights"][i] for i in data["items"]) <= y[j] * data["bin_capacity"] )
C++
// Create the constraints. // Each item is in exactly one bin. for (int i = 0; i < data.num_items; ++i) { LinearExpr sum; for (int j = 0; j < data.num_bins; ++j) { sum += x[i][j]; } solver->MakeRowConstraint(sum == 1.0); } // For each bin that is used, the total packed weight can be at most // the bin capacity. for (int j = 0; j < data.num_bins; ++j) { LinearExpr weight; for (int i = 0; i < data.num_items; ++i) { weight += data.weights[i] * LinearExpr(x[i][j]); } solver->MakeRowConstraint(weight <= LinearExpr(y[j]) * data.bin_capacity); }
Java
double infinity = java.lang.Double.POSITIVE_INFINITY; for (int i = 0; i < data.numItems; ++i) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int j = 0; j < data.numBins; ++j) { constraint.setCoefficient(x[i][j], 1); } } // The bin capacity contraint for bin j is // sum_i w_i x_ij <= C*y_j // To define this constraint, first subtract the left side from the right to get // 0 <= C*y_j - sum_i w_i x_ij // // Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must // be less than or equal to C. But it's not necessary to add this constraint // because it is forced by the other constraints. for (int j = 0; j < data.numBins; ++j) { MPConstraint constraint = solver.makeConstraint(0, infinity, ""); constraint.setCoefficient(y[j], data.binCapacity); for (int i = 0; i < data.numItems; ++i) { constraint.setCoefficient(x[i][j], -data.weights[i]); } }
C#
for (int i = 0; i < data.NumItems; ++i) { Constraint constraint = solver.MakeConstraint(1, 1, ""); for (int j = 0; j < data.NumBins; ++j) { constraint.SetCoefficient(x[i, j], 1); } } for (int j = 0; j < data.NumBins; ++j) { Constraint constraint = solver.MakeConstraint(0, Double.PositiveInfinity, ""); constraint.SetCoefficient(y[j], data.BinCapacity); for (int i = 0; i < data.NumItems; ++i) { constraint.SetCoefficient(x[i, j], -DataModel.Weights[i]); } }
Batasannya adalah sebagai berikut:
- Setiap item harus ditempatkan tepat di satu bin. Batasan ini ditetapkan oleh
mengharuskan jumlah
x[i][j]
pada semua binj
sama dengan 1. Catatan ini berbeda dari masalah {i> multiple knapsack<i}, di mana jumlahnya hanya harus kurang dari atau sama dengan 1, karena tidak semua item harus berkemas. Berat total yang dikemas dalam setiap tempat sampah tidak boleh melebihi kapasitasnya. Ini adalah batasan yang sama seperti pada masalah {i> multiple knapsack<i}, tetapi dalam kasus ini kalikan kapasitas bin di sisi kanan pertidaksamaan dengan
y[j]
.Mengapa dikalikan dengan
y[j]
? Karena memaksay[j]
untuk sama dengan 1 jika ada item yang dikemas dalam tempat sampahj
. Hal ini karena jikay[j]
adalah 0, sisi kanan dari ketidaksetaraan akan menjadi 0, sedangkan bobot bin di sisi kiri akan lebih besar dari 0, sehingga melanggar batasan. Ini menghubungkan variabely[j]
dengan tujuan masalah, untuk saat ini pemecah masalah akan mencoba meminimalkan jumlah bin yangy[j]
adalah 1.
Menentukan tujuan
Kode berikut menentukan fungsi objektif untuk masalah tersebut.
Python
# Objective: minimize the number of bins used. solver.Minimize(solver.Sum([y[j] for j in data["bins"]]))
C++
// Create the objective function. MPObjective* const objective = solver->MutableObjective(); LinearExpr num_bins_used; for (int j = 0; j < data.num_bins; ++j) { num_bins_used += y[j]; } objective->MinimizeLinearExpr(num_bins_used);
Java
MPObjective objective = solver.objective(); for (int j = 0; j < data.numBins; ++j) { objective.setCoefficient(y[j], 1); } objective.setMinimization();
C#
Objective objective = solver.Objective(); for (int j = 0; j < data.NumBins; ++j) { objective.SetCoefficient(y[j], 1); } objective.SetMinimization();
Karena y[j]
adalah 1 jika bin j digunakan, dan 0 jika tidak, jumlah y[j]
adalah
jumlah {i>bin
<i}yang digunakan. Tujuannya adalah untuk meminimalkan jumlah.
Memanggil pemecah masalah dan mencetak solusinya
Kode berikut memanggil pemecah dan mencetak solusinya.
Python
print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: num_bins = 0 for j in data["bins"]: if y[j].solution_value() == 1: bin_items = [] bin_weight = 0 for i in data["items"]: if x[i, j].solution_value() > 0: bin_items.append(i) bin_weight += data["weights"][i] if bin_items: num_bins += 1 print("Bin number", j) print(" Items packed:", bin_items) print(" Total weight:", bin_weight) print() print() print("Number of bins used:", num_bins) print("Time = ", solver.WallTime(), " milliseconds") else: print("The problem does not have an optimal solution.")
C++
const MPSolver::ResultStatus result_status = solver->Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { std::cerr << "The problem does not have an optimal solution!"; return; } std::cout << "Number of bins used: " << objective->Value() << std::endl << std::endl; double total_weight = 0; for (int j = 0; j < data.num_bins; ++j) { if (y[j]->solution_value() == 1) { std::cout << "Bin " << j << std::endl << std::endl; double bin_weight = 0; for (int i = 0; i < data.num_items; ++i) { if (x[i][j]->solution_value() == 1) { std::cout << "Item " << i << " - Weight: " << data.weights[i] << std::endl; bin_weight += data.weights[i]; } } std::cout << "Packed bin weight: " << bin_weight << std::endl << std::endl; total_weight += bin_weight; } } std::cout << "Total packed weight: " << total_weight << std::endl;
Java
final MPSolver.ResultStatus resultStatus = solver.solve(); // Check that the problem has an optimal solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Number of bins used: " + objective.value()); double totalWeight = 0; for (int j = 0; j < data.numBins; ++j) { if (y[j].solutionValue() == 1) { System.out.println("\nBin " + j + "\n"); double binWeight = 0; for (int i = 0; i < data.numItems; ++i) { if (x[i][j].solutionValue() == 1) { System.out.println("Item " + i + " - weight: " + data.weights[i]); binWeight += data.weights[i]; } } System.out.println("Packed bin weight: " + binWeight); totalWeight += binWeight; } } System.out.println("\nTotal packed weight: " + totalWeight); } else { System.err.println("The problem does not have an optimal solution."); }
C#
Solver.ResultStatus resultStatus = solver.Solve(); // Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); return; } Console.WriteLine($"Number of bins used: {solver.Objective().Value()}"); double TotalWeight = 0.0; for (int j = 0; j < data.NumBins; ++j) { double BinWeight = 0.0; if (y[j].SolutionValue() == 1) { Console.WriteLine($"Bin {j}"); for (int i = 0; i < data.NumItems; ++i) { if (x[i, j].SolutionValue() == 1) { Console.WriteLine($"Item {i} weight: {DataModel.Weights[i]}"); BinWeight += DataModel.Weights[i]; } } Console.WriteLine($"Packed bin weight: {BinWeight}"); TotalWeight += BinWeight; } } Console.WriteLine($"Total packed weight: {TotalWeight}");
Solusi ini menunjukkan jumlah bin minimum yang diperlukan untuk mengemas semua item. Untuk setiap {i>bin<i} yang digunakan, solusi menunjukkan item yang dikemas di dalamnya, dan bobot bin total.
Output program
Saat Anda menjalankan program, program akan menampilkan output berikut.
Bin number 0 Items packed: [1, 5, 10] Total weight: 87 Bin number 1 Items packed: [0, 6] Total weight: 90 Bin number 2 Items packed: [2, 4, 7] Total weight: 97 Bin number 3 Items packed: [3, 8, 9] Total weight: 96 Number of bins used: 4.0
Selesaikan program
Program lengkap untuk masalah pengemasan bin ditampilkan di bawah ini.
Python
from ortools.linear_solver import pywraplp def create_data_model(): """Create the data for the example.""" data = {} weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30] data["weights"] = weights data["items"] = list(range(len(weights))) data["bins"] = data["items"] data["bin_capacity"] = 100 return data def main(): data = create_data_model() # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver("SCIP") if not solver: return # Variables # x[i, j] = 1 if item i is packed in bin j. x = {} for i in data["items"]: for j in data["bins"]: x[(i, j)] = solver.IntVar(0, 1, "x_%i_%i" % (i, j)) # y[j] = 1 if bin j is used. y = {} for j in data["bins"]: y[j] = solver.IntVar(0, 1, "y[%i]" % j) # Constraints # Each item must be in exactly one bin. for i in data["items"]: solver.Add(sum(x[i, j] for j in data["bins"]) == 1) # The amount packed in each bin cannot exceed its capacity. for j in data["bins"]: solver.Add( sum(x[(i, j)] * data["weights"][i] for i in data["items"]) <= y[j] * data["bin_capacity"] ) # Objective: minimize the number of bins used. solver.Minimize(solver.Sum([y[j] for j in data["bins"]])) print(f"Solving with {solver.SolverVersion()}") status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: num_bins = 0 for j in data["bins"]: if y[j].solution_value() == 1: bin_items = [] bin_weight = 0 for i in data["items"]: if x[i, j].solution_value() > 0: bin_items.append(i) bin_weight += data["weights"][i] if bin_items: num_bins += 1 print("Bin number", j) print(" Items packed:", bin_items) print(" Total weight:", bin_weight) print() print() print("Number of bins used:", num_bins) print("Time = ", solver.WallTime(), " milliseconds") else: print("The problem does not have an optimal solution.") if __name__ == "__main__": main()
C++
#include <iostream> #include <memory> #include <numeric> #include <ostream> #include <vector> #include "ortools/linear_solver/linear_expr.h" #include "ortools/linear_solver/linear_solver.h" namespace operations_research { struct DataModel { const std::vector<double> weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30}; const int num_items = weights.size(); const int num_bins = weights.size(); const int bin_capacity = 100; }; void BinPackingMip() { DataModel data; // Create the mip solver with the SCIP backend. std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP")); if (!solver) { LOG(WARNING) << "SCIP solver unavailable."; return; } std::vector<std::vector<const MPVariable*>> x( data.num_items, std::vector<const MPVariable*>(data.num_bins)); for (int i = 0; i < data.num_items; ++i) { for (int j = 0; j < data.num_bins; ++j) { x[i][j] = solver->MakeIntVar(0.0, 1.0, ""); } } // y[j] = 1 if bin j is used. std::vector<const MPVariable*> y(data.num_bins); for (int j = 0; j < data.num_bins; ++j) { y[j] = solver->MakeIntVar(0.0, 1.0, ""); } // Create the constraints. // Each item is in exactly one bin. for (int i = 0; i < data.num_items; ++i) { LinearExpr sum; for (int j = 0; j < data.num_bins; ++j) { sum += x[i][j]; } solver->MakeRowConstraint(sum == 1.0); } // For each bin that is used, the total packed weight can be at most // the bin capacity. for (int j = 0; j < data.num_bins; ++j) { LinearExpr weight; for (int i = 0; i < data.num_items; ++i) { weight += data.weights[i] * LinearExpr(x[i][j]); } solver->MakeRowConstraint(weight <= LinearExpr(y[j]) * data.bin_capacity); } // Create the objective function. MPObjective* const objective = solver->MutableObjective(); LinearExpr num_bins_used; for (int j = 0; j < data.num_bins; ++j) { num_bins_used += y[j]; } objective->MinimizeLinearExpr(num_bins_used); const MPSolver::ResultStatus result_status = solver->Solve(); // Check that the problem has an optimal solution. if (result_status != MPSolver::OPTIMAL) { std::cerr << "The problem does not have an optimal solution!"; return; } std::cout << "Number of bins used: " << objective->Value() << std::endl << std::endl; double total_weight = 0; for (int j = 0; j < data.num_bins; ++j) { if (y[j]->solution_value() == 1) { std::cout << "Bin " << j << std::endl << std::endl; double bin_weight = 0; for (int i = 0; i < data.num_items; ++i) { if (x[i][j]->solution_value() == 1) { std::cout << "Item " << i << " - Weight: " << data.weights[i] << std::endl; bin_weight += data.weights[i]; } } std::cout << "Packed bin weight: " << bin_weight << std::endl << std::endl; total_weight += bin_weight; } } std::cout << "Total packed weight: " << total_weight << std::endl; } } // namespace operations_research int main(int argc, char** argv) { operations_research::BinPackingMip(); return EXIT_SUCCESS; }
Java
package com.google.ortools.linearsolver.samples; import com.google.ortools.Loader; import com.google.ortools.linearsolver.MPConstraint; import com.google.ortools.linearsolver.MPObjective; import com.google.ortools.linearsolver.MPSolver; import com.google.ortools.linearsolver.MPVariable; /** Bin packing problem. */ public class BinPackingMip { static class DataModel { public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30}; public final int numItems = weights.length; public final int numBins = weights.length; public final int binCapacity = 100; } public static void main(String[] args) throws Exception { Loader.loadNativeLibraries(); final DataModel data = new DataModel(); // Create the linear solver with the SCIP backend. MPSolver solver = MPSolver.createSolver("SCIP"); if (solver == null) { System.out.println("Could not create solver SCIP"); return; } MPVariable[][] x = new MPVariable[data.numItems][data.numBins]; for (int i = 0; i < data.numItems; ++i) { for (int j = 0; j < data.numBins; ++j) { x[i][j] = solver.makeIntVar(0, 1, ""); } } MPVariable[] y = new MPVariable[data.numBins]; for (int j = 0; j < data.numBins; ++j) { y[j] = solver.makeIntVar(0, 1, ""); } double infinity = java.lang.Double.POSITIVE_INFINITY; for (int i = 0; i < data.numItems; ++i) { MPConstraint constraint = solver.makeConstraint(1, 1, ""); for (int j = 0; j < data.numBins; ++j) { constraint.setCoefficient(x[i][j], 1); } } // The bin capacity contraint for bin j is // sum_i w_i x_ij <= C*y_j // To define this constraint, first subtract the left side from the right to get // 0 <= C*y_j - sum_i w_i x_ij // // Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must // be less than or equal to C. But it's not necessary to add this constraint // because it is forced by the other constraints. for (int j = 0; j < data.numBins; ++j) { MPConstraint constraint = solver.makeConstraint(0, infinity, ""); constraint.setCoefficient(y[j], data.binCapacity); for (int i = 0; i < data.numItems; ++i) { constraint.setCoefficient(x[i][j], -data.weights[i]); } } MPObjective objective = solver.objective(); for (int j = 0; j < data.numBins; ++j) { objective.setCoefficient(y[j], 1); } objective.setMinimization(); final MPSolver.ResultStatus resultStatus = solver.solve(); // Check that the problem has an optimal solution. if (resultStatus == MPSolver.ResultStatus.OPTIMAL) { System.out.println("Number of bins used: " + objective.value()); double totalWeight = 0; for (int j = 0; j < data.numBins; ++j) { if (y[j].solutionValue() == 1) { System.out.println("\nBin " + j + "\n"); double binWeight = 0; for (int i = 0; i < data.numItems; ++i) { if (x[i][j].solutionValue() == 1) { System.out.println("Item " + i + " - weight: " + data.weights[i]); binWeight += data.weights[i]; } } System.out.println("Packed bin weight: " + binWeight); totalWeight += binWeight; } } System.out.println("\nTotal packed weight: " + totalWeight); } else { System.err.println("The problem does not have an optimal solution."); } } private BinPackingMip() {} }
C#
using System; using Google.OrTools.LinearSolver; public class BinPackingMip { class DataModel { public static double[] Weights = { 48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30 }; public int NumItems = Weights.Length; public int NumBins = Weights.Length; public double BinCapacity = 100.0; } public static void Main() { DataModel data = new DataModel(); // Create the linear solver with the SCIP backend. Solver solver = Solver.CreateSolver("SCIP"); if (solver is null) { return; } Variable[,] x = new Variable[data.NumItems, data.NumBins]; for (int i = 0; i < data.NumItems; i++) { for (int j = 0; j < data.NumBins; j++) { x[i, j] = solver.MakeIntVar(0, 1, $"x_{i}_{j}"); } } Variable[] y = new Variable[data.NumBins]; for (int j = 0; j < data.NumBins; j++) { y[j] = solver.MakeIntVar(0, 1, $"y_{j}"); } for (int i = 0; i < data.NumItems; ++i) { Constraint constraint = solver.MakeConstraint(1, 1, ""); for (int j = 0; j < data.NumBins; ++j) { constraint.SetCoefficient(x[i, j], 1); } } for (int j = 0; j < data.NumBins; ++j) { Constraint constraint = solver.MakeConstraint(0, Double.PositiveInfinity, ""); constraint.SetCoefficient(y[j], data.BinCapacity); for (int i = 0; i < data.NumItems; ++i) { constraint.SetCoefficient(x[i, j], -DataModel.Weights[i]); } } Objective objective = solver.Objective(); for (int j = 0; j < data.NumBins; ++j) { objective.SetCoefficient(y[j], 1); } objective.SetMinimization(); Solver.ResultStatus resultStatus = solver.Solve(); // Check that the problem has an optimal solution. if (resultStatus != Solver.ResultStatus.OPTIMAL) { Console.WriteLine("The problem does not have an optimal solution!"); return; } Console.WriteLine($"Number of bins used: {solver.Objective().Value()}"); double TotalWeight = 0.0; for (int j = 0; j < data.NumBins; ++j) { double BinWeight = 0.0; if (y[j].SolutionValue() == 1) { Console.WriteLine($"Bin {j}"); for (int i = 0; i < data.NumItems; ++i) { if (x[i, j].SolutionValue() == 1) { Console.WriteLine($"Item {i} weight: {DataModel.Weights[i]}"); BinWeight += DataModel.Weights[i]; } } Console.WriteLine($"Packed bin weight: {BinWeight}"); TotalWeight += BinWeight; } } Console.WriteLine($"Total packed weight: {TotalWeight}"); } }