Problem z pakowaniem kontenera

Podobnie jak w przypadku wielu plecaków, problem z pakowaniem pojemników wiąże się również pakowania produktów do kosza. Problem z pakowaniem pojemników przebiega jednak inaczej, cel: znajdź jak najmniej pojemników, w których znajdą się wszystkie elementy.

Poniżej znajdziesz podsumowanie różnic między tymi dwoma problemami:

  • Problem z wieloma plecakami: uporządkuj podzbiór przedmiotów w ustaloną liczbę pojemników o różnej pojemności, tak aby łączna wartość ma wartość maksymalną.

  • Problem z pakowaniem kontenerów: przy takiej liczbie pojemników o wspólnej pojemności, jaka jest potrzebna, znaleźć najmniejszą liczbę, która mieści wszystkie elementy. W tym zadaniu nie mają przypisanej wartości, bo cel nie ma związku z wartością.

Następny przykład pokazuje, jak rozwiązać problem z pakowaniem pojemników.

Przykład

W tym przykładzie produkty o różnej wadze muszą zostać zapakowane do pojemników. o wspólnej wydajności. Zakładając, że ilość pojemników jest wystarczająca do przechowywania wszystkich problemów jest znaleźć jak najmniejszą liczbę, która wystarczy.

W kolejnych sekcjach przedstawiamy programy, które pomagają rozwiązać ten problem. Pełny zakres Więcej informacji znajdziesz w artykule Kompletne programy.

W tym przykładzie korzystamy z kodu MPSolver.

Zaimportuj biblioteki

Poniższy kod importuje wymagane biblioteki.

Python

from ortools.linear_solver import pywraplp

C++

#include <iostream>
#include <memory>
#include <numeric>
#include <ostream>
#include <vector>

#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

C#

using System;
using Google.OrTools.LinearSolver;

Tworzenie danych

Poniższy kod tworzy dane dla przykładu.

Python

def create_data_model():
    """Create the data for the example."""
    data = {}
    weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30]
    data["weights"] = weights
    data["items"] = list(range(len(weights)))
    data["bins"] = data["items"]
    data["bin_capacity"] = 100
    return data

C++

struct DataModel {
  const std::vector<double> weights = {48, 30, 19, 36, 36, 27,
                                       42, 42, 36, 24, 30};
  const int num_items = weights.size();
  const int num_bins = weights.size();
  const int bin_capacity = 100;
};

Java

static class DataModel {
  public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30};
  public final int numItems = weights.length;
  public final int numBins = weights.length;
  public final int binCapacity = 100;
}

C#

class DataModel
{
    public static double[] Weights = { 48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30 };
    public int NumItems = Weights.Length;
    public int NumBins = Weights.Length;
    public double BinCapacity = 100.0;
}

Dane te obejmują:

  • weights: wektor zawierający wagi elementów.
  • bin_capacity: pojedyncza liczba określająca pojemność kontenerów.

Do elementów nie są przypisane żadne wartości, ponieważ celem jest zminimalizowanie liczba przedziałów nie obejmuje wartości.

Pamiętaj, że num_bins jest ustawiona na liczbę elementów. Dzieje się tak, ponieważ zadanie ma rozwiązanie, waga każdego przedmiotu musi być mniejsza lub równa do pojemności pojemnika. W takim przypadku maksymalna liczba pojemników, której możesz potrzebować, to liczbę elementów, bo każdy element można zawsze umieścić w oddzielnym koszyku.

Zadeklarowanie rozwiązania

Ten kod deklaruje rozwiązanie.

Python

  # Create the mip solver with the SCIP backend.
  solver = pywraplp.Solver.CreateSolver("SCIP")

  if not solver:
      return

C++

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

      // Create the linear solver with the SCIP backend.
      Solver solver = Solver.CreateSolver("SCIP");
      if (solver is null)
      {
          return;
      }

Tworzenie zmiennych

Poniższy kod tworzy zmienne dla programu.

Python

# Variables
# x[i, j] = 1 if item i is packed in bin j.
x = {}
for i in data["items"]:
    for j in data["bins"]:
        x[(i, j)] = solver.IntVar(0, 1, "x_%i_%i" % (i, j))

# y[j] = 1 if bin j is used.
y = {}
for j in data["bins"]:
    y[j] = solver.IntVar(0, 1, "y[%i]" % j)

C++

std::vector<std::vector<const MPVariable*>> x(
    data.num_items, std::vector<const MPVariable*>(data.num_bins));
for (int i = 0; i < data.num_items; ++i) {
  for (int j = 0; j < data.num_bins; ++j) {
    x[i][j] = solver->MakeIntVar(0.0, 1.0, "");
  }
}
// y[j] = 1 if bin j is used.
std::vector<const MPVariable*> y(data.num_bins);
for (int j = 0; j < data.num_bins; ++j) {
  y[j] = solver->MakeIntVar(0.0, 1.0, "");
}

Java

MPVariable[][] x = new MPVariable[data.numItems][data.numBins];
for (int i = 0; i < data.numItems; ++i) {
  for (int j = 0; j < data.numBins; ++j) {
    x[i][j] = solver.makeIntVar(0, 1, "");
  }
}
MPVariable[] y = new MPVariable[data.numBins];
for (int j = 0; j < data.numBins; ++j) {
  y[j] = solver.makeIntVar(0, 1, "");
}

C#

Variable[,] x = new Variable[data.NumItems, data.NumBins];
for (int i = 0; i < data.NumItems; i++)
{
    for (int j = 0; j < data.NumBins; j++)
    {
        x[i, j] = solver.MakeIntVar(0, 1, $"x_{i}_{j}");
    }
}
Variable[] y = new Variable[data.NumBins];
for (int j = 0; j < data.NumBins; j++)
{
    y[j] = solver.MakeIntVar(0, 1, $"y_{j}");
}

Tak jak w przykładzie z wieloma splotami, definiujesz tablicę zmiennych x[(i, j)], której wartość wynosi 1, jeśli element i znajduje się w pomieszczeniu j. W przeciwnym razie ma wartość 0.

Na potrzeby pakowania kontenerów definiuje się również tablicę zmiennych y[j], której wartość wynosi 1 jeśli używany jest przedział j – czyli jeśli są w nim spakowane przedmioty – oraz 0 w przeciwnym razie. Suma wartości y[j] będzie liczbą wykorzystanych kontenerów.

Zdefiniuj ograniczenia

Ograniczenia tego problemu definiuje się za pomocą tego kodu:

Python

# Constraints
# Each item must be in exactly one bin.
for i in data["items"]:
    solver.Add(sum(x[i, j] for j in data["bins"]) == 1)

# The amount packed in each bin cannot exceed its capacity.
for j in data["bins"]:
    solver.Add(
        sum(x[(i, j)] * data["weights"][i] for i in data["items"])
        <= y[j] * data["bin_capacity"]
    )

C++

// Create the constraints.
// Each item is in exactly one bin.
for (int i = 0; i < data.num_items; ++i) {
  LinearExpr sum;
  for (int j = 0; j < data.num_bins; ++j) {
    sum += x[i][j];
  }
  solver->MakeRowConstraint(sum == 1.0);
}
// For each bin that is used, the total packed weight can be at most
// the bin capacity.
for (int j = 0; j < data.num_bins; ++j) {
  LinearExpr weight;
  for (int i = 0; i < data.num_items; ++i) {
    weight += data.weights[i] * LinearExpr(x[i][j]);
  }
  solver->MakeRowConstraint(weight <= LinearExpr(y[j]) * data.bin_capacity);
}

Java

double infinity = java.lang.Double.POSITIVE_INFINITY;
for (int i = 0; i < data.numItems; ++i) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int j = 0; j < data.numBins; ++j) {
    constraint.setCoefficient(x[i][j], 1);
  }
}
// The bin capacity contraint for bin j is
//   sum_i w_i x_ij <= C*y_j
// To define this constraint, first subtract the left side from the right to get
//   0 <= C*y_j - sum_i w_i x_ij
//
// Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must
// be less than or equal to C. But it's not necessary to add this constraint
// because it is forced by the other constraints.

for (int j = 0; j < data.numBins; ++j) {
  MPConstraint constraint = solver.makeConstraint(0, infinity, "");
  constraint.setCoefficient(y[j], data.binCapacity);
  for (int i = 0; i < data.numItems; ++i) {
    constraint.setCoefficient(x[i][j], -data.weights[i]);
  }
}

C#

for (int i = 0; i < data.NumItems; ++i)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    for (int j = 0; j < data.NumBins; ++j)
    {
        constraint.SetCoefficient(x[i, j], 1);
    }
}

for (int j = 0; j < data.NumBins; ++j)
{
    Constraint constraint = solver.MakeConstraint(0, Double.PositiveInfinity, "");
    constraint.SetCoefficient(y[j], data.BinCapacity);
    for (int i = 0; i < data.NumItems; ++i)
    {
        constraint.SetCoefficient(x[i, j], -DataModel.Weights[i]);
    }
}

Ograniczenia są następujące:

  • Każdy element musi znajdować się dokładnie w jednym koszyku. To ograniczenie jest ustawiane przez wymaganie, aby suma x[i][j] we wszystkich przedziałach j była równa 1. Notatka że różni się to od zadania „wielokrotnego plecaka”, w którym suma być mniejsze lub równe 1, ponieważ nie wszystkie elementy muszą być zapakowany.
  • Łączna waga zapakowana w każdym pojemniku nie może przekroczyć jego pojemności. To jest ale w tym przypadku pomnóż pojemność przedziału po prawej stronie nierówności przez y[j].

    Po co mnożyć przez y[j]? Ponieważ wymusza na y[j] równanie 1, jeśli dowolny element jest zapakowano do kosza j. Dzieje się tak dlatego, że jeśli y[j] miałoby wartość 0, po prawej stronie argumentu nierówność wyniesie 0, a waga przedziału po lewej stronie wyniesie jest większa niż 0, co narusza ograniczenie. Łączy zmienne y[j] na potrzeby celu, na razie rozwiązanie spróbuje zminimalizować liczba przedziałów, dla których y[j] to 1.

Określ cel

Poniższy kod definiuje funkcję celu dla zadania.

Python

# Objective: minimize the number of bins used.
solver.Minimize(solver.Sum([y[j] for j in data["bins"]]))

C++

// Create the objective function.
MPObjective* const objective = solver->MutableObjective();
LinearExpr num_bins_used;
for (int j = 0; j < data.num_bins; ++j) {
  num_bins_used += y[j];
}
objective->MinimizeLinearExpr(num_bins_used);

Java

MPObjective objective = solver.objective();
for (int j = 0; j < data.numBins; ++j) {
  objective.setCoefficient(y[j], 1);
}
objective.setMinimization();

C#

Objective objective = solver.Objective();
for (int j = 0; j < data.NumBins; ++j)
{
    objective.SetCoefficient(y[j], 1);
}
objective.SetMinimization();

Ponieważ y[j] ma wartość 1, jeśli użyto bin j, a 0, jeśli jest inaczej, suma y[j] jest liczbę wykorzystanych pojemników. Celem jest zminimalizowanie sumy.

Wywołaj rozwiązanie i wydrukuj rozwiązanie

Poniższy kod wywołuje i wydrukuje rozwiązanie.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()
if status == pywraplp.Solver.OPTIMAL:
    num_bins = 0
    for j in data["bins"]:
        if y[j].solution_value() == 1:
            bin_items = []
            bin_weight = 0
            for i in data["items"]:
                if x[i, j].solution_value() > 0:
                    bin_items.append(i)
                    bin_weight += data["weights"][i]
            if bin_items:
                num_bins += 1
                print("Bin number", j)
                print("  Items packed:", bin_items)
                print("  Total weight:", bin_weight)
                print()
    print()
    print("Number of bins used:", num_bins)
    print("Time = ", solver.WallTime(), " milliseconds")
else:
    print("The problem does not have an optimal solution.")

C++

const MPSolver::ResultStatus result_status = solver->Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
  std::cerr << "The problem does not have an optimal solution!";
  return;
}
std::cout << "Number of bins used: " << objective->Value() << std::endl
          << std::endl;
double total_weight = 0;
for (int j = 0; j < data.num_bins; ++j) {
  if (y[j]->solution_value() == 1) {
    std::cout << "Bin " << j << std::endl << std::endl;
    double bin_weight = 0;
    for (int i = 0; i < data.num_items; ++i) {
      if (x[i][j]->solution_value() == 1) {
        std::cout << "Item " << i << " - Weight: " << data.weights[i]
                  << std::endl;
        bin_weight += data.weights[i];
      }
    }
    std::cout << "Packed bin weight: " << bin_weight << std::endl
              << std::endl;
    total_weight += bin_weight;
  }
}
std::cout << "Total packed weight: " << total_weight << std::endl;

Java

final MPSolver.ResultStatus resultStatus = solver.solve();
// Check that the problem has an optimal solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
  System.out.println("Number of bins used: " + objective.value());
  double totalWeight = 0;
  for (int j = 0; j < data.numBins; ++j) {
    if (y[j].solutionValue() == 1) {
      System.out.println("\nBin " + j + "\n");
      double binWeight = 0;
      for (int i = 0; i < data.numItems; ++i) {
        if (x[i][j].solutionValue() == 1) {
          System.out.println("Item " + i + " - weight: " + data.weights[i]);
          binWeight += data.weights[i];
        }
      }
      System.out.println("Packed bin weight: " + binWeight);
      totalWeight += binWeight;
    }
  }
  System.out.println("\nTotal packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

C#

Solver.ResultStatus resultStatus = solver.Solve();
// Check that the problem has an optimal solution.
if (resultStatus != Solver.ResultStatus.OPTIMAL)
{
    Console.WriteLine("The problem does not have an optimal solution!");
    return;
}
Console.WriteLine($"Number of bins used: {solver.Objective().Value()}");
double TotalWeight = 0.0;
for (int j = 0; j < data.NumBins; ++j)
{
    double BinWeight = 0.0;
    if (y[j].SolutionValue() == 1)
    {
        Console.WriteLine($"Bin {j}");
        for (int i = 0; i < data.NumItems; ++i)
        {
            if (x[i, j].SolutionValue() == 1)
            {
                Console.WriteLine($"Item {i} weight: {DataModel.Weights[i]}");
                BinWeight += DataModel.Weights[i];
            }
        }
        Console.WriteLine($"Packed bin weight: {BinWeight}");
        TotalWeight += BinWeight;
    }
}
Console.WriteLine($"Total packed weight: {TotalWeight}");

Rozwiązanie pokazuje minimalną liczbę pojemników wymaganych do zapakowania wszystkich produktów. W przypadku każdego używanego pojemnika rozwiązanie pokazuje zapakowane produkty, a także całkowitej wagi kontenera.

Wyniki programu

Po uruchomieniu programu wyświetli się następujące dane wyjściowe.

Bin number 0
  Items packed: [1, 5, 10]
  Total weight: 87

Bin number 1
  Items packed: [0, 6]
  Total weight: 90

Bin number 2
  Items packed: [2, 4, 7]
  Total weight: 97

Bin number 3
  Items packed: [3, 8, 9]
  Total weight: 96


Number of bins used: 4.0

Kompletne programy

Poniżej znajdziesz kompletne programy, które pomogą Ci rozwiązać problem z pakowaniem pojemników.

Python

from ortools.linear_solver import pywraplp


def create_data_model():
    """Create the data for the example."""
    data = {}
    weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30]
    data["weights"] = weights
    data["items"] = list(range(len(weights)))
    data["bins"] = data["items"]
    data["bin_capacity"] = 100
    return data



def main():
    data = create_data_model()

    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")

    if not solver:
        return

    # Variables
    # x[i, j] = 1 if item i is packed in bin j.
    x = {}
    for i in data["items"]:
        for j in data["bins"]:
            x[(i, j)] = solver.IntVar(0, 1, "x_%i_%i" % (i, j))

    # y[j] = 1 if bin j is used.
    y = {}
    for j in data["bins"]:
        y[j] = solver.IntVar(0, 1, "y[%i]" % j)

    # Constraints
    # Each item must be in exactly one bin.
    for i in data["items"]:
        solver.Add(sum(x[i, j] for j in data["bins"]) == 1)

    # The amount packed in each bin cannot exceed its capacity.
    for j in data["bins"]:
        solver.Add(
            sum(x[(i, j)] * data["weights"][i] for i in data["items"])
            <= y[j] * data["bin_capacity"]
        )

    # Objective: minimize the number of bins used.
    solver.Minimize(solver.Sum([y[j] for j in data["bins"]]))

    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    if status == pywraplp.Solver.OPTIMAL:
        num_bins = 0
        for j in data["bins"]:
            if y[j].solution_value() == 1:
                bin_items = []
                bin_weight = 0
                for i in data["items"]:
                    if x[i, j].solution_value() > 0:
                        bin_items.append(i)
                        bin_weight += data["weights"][i]
                if bin_items:
                    num_bins += 1
                    print("Bin number", j)
                    print("  Items packed:", bin_items)
                    print("  Total weight:", bin_weight)
                    print()
        print()
        print("Number of bins used:", num_bins)
        print("Time = ", solver.WallTime(), " milliseconds")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()
 

C++

#include <iostream>
#include <memory>
#include <numeric>
#include <ostream>
#include <vector>

#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
struct DataModel {
  const std::vector<double> weights = {48, 30, 19, 36, 36, 27,
                                       42, 42, 36, 24, 30};
  const int num_items = weights.size();
  const int num_bins = weights.size();
  const int bin_capacity = 100;
};

void BinPackingMip() {
  DataModel data;

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  std::vector<std::vector<const MPVariable*>> x(
      data.num_items, std::vector<const MPVariable*>(data.num_bins));
  for (int i = 0; i < data.num_items; ++i) {
    for (int j = 0; j < data.num_bins; ++j) {
      x[i][j] = solver->MakeIntVar(0.0, 1.0, "");
    }
  }
  // y[j] = 1 if bin j is used.
  std::vector<const MPVariable*> y(data.num_bins);
  for (int j = 0; j < data.num_bins; ++j) {
    y[j] = solver->MakeIntVar(0.0, 1.0, "");
  }

  // Create the constraints.
  // Each item is in exactly one bin.
  for (int i = 0; i < data.num_items; ++i) {
    LinearExpr sum;
    for (int j = 0; j < data.num_bins; ++j) {
      sum += x[i][j];
    }
    solver->MakeRowConstraint(sum == 1.0);
  }
  // For each bin that is used, the total packed weight can be at most
  // the bin capacity.
  for (int j = 0; j < data.num_bins; ++j) {
    LinearExpr weight;
    for (int i = 0; i < data.num_items; ++i) {
      weight += data.weights[i] * LinearExpr(x[i][j]);
    }
    solver->MakeRowConstraint(weight <= LinearExpr(y[j]) * data.bin_capacity);
  }

  // Create the objective function.
  MPObjective* const objective = solver->MutableObjective();
  LinearExpr num_bins_used;
  for (int j = 0; j < data.num_bins; ++j) {
    num_bins_used += y[j];
  }
  objective->MinimizeLinearExpr(num_bins_used);

  const MPSolver::ResultStatus result_status = solver->Solve();

  // Check that the problem has an optimal solution.
  if (result_status != MPSolver::OPTIMAL) {
    std::cerr << "The problem does not have an optimal solution!";
    return;
  }
  std::cout << "Number of bins used: " << objective->Value() << std::endl
            << std::endl;
  double total_weight = 0;
  for (int j = 0; j < data.num_bins; ++j) {
    if (y[j]->solution_value() == 1) {
      std::cout << "Bin " << j << std::endl << std::endl;
      double bin_weight = 0;
      for (int i = 0; i < data.num_items; ++i) {
        if (x[i][j]->solution_value() == 1) {
          std::cout << "Item " << i << " - Weight: " << data.weights[i]
                    << std::endl;
          bin_weight += data.weights[i];
        }
      }
      std::cout << "Packed bin weight: " << bin_weight << std::endl
                << std::endl;
      total_weight += bin_weight;
    }
  }
  std::cout << "Total packed weight: " << total_weight << std::endl;
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::BinPackingMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

/** Bin packing problem. */
public class BinPackingMip {
  static class DataModel {
    public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30};
    public final int numItems = weights.length;
    public final int numBins = weights.length;
    public final int binCapacity = 100;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    final DataModel data = new DataModel();

    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    MPVariable[][] x = new MPVariable[data.numItems][data.numBins];
    for (int i = 0; i < data.numItems; ++i) {
      for (int j = 0; j < data.numBins; ++j) {
        x[i][j] = solver.makeIntVar(0, 1, "");
      }
    }
    MPVariable[] y = new MPVariable[data.numBins];
    for (int j = 0; j < data.numBins; ++j) {
      y[j] = solver.makeIntVar(0, 1, "");
    }

    double infinity = java.lang.Double.POSITIVE_INFINITY;
    for (int i = 0; i < data.numItems; ++i) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int j = 0; j < data.numBins; ++j) {
        constraint.setCoefficient(x[i][j], 1);
      }
    }
    // The bin capacity contraint for bin j is
    //   sum_i w_i x_ij <= C*y_j
    // To define this constraint, first subtract the left side from the right to get
    //   0 <= C*y_j - sum_i w_i x_ij
    //
    // Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must
    // be less than or equal to C. But it's not necessary to add this constraint
    // because it is forced by the other constraints.

    for (int j = 0; j < data.numBins; ++j) {
      MPConstraint constraint = solver.makeConstraint(0, infinity, "");
      constraint.setCoefficient(y[j], data.binCapacity);
      for (int i = 0; i < data.numItems; ++i) {
        constraint.setCoefficient(x[i][j], -data.weights[i]);
      }
    }

    MPObjective objective = solver.objective();
    for (int j = 0; j < data.numBins; ++j) {
      objective.setCoefficient(y[j], 1);
    }
    objective.setMinimization();

    final MPSolver.ResultStatus resultStatus = solver.solve();

    // Check that the problem has an optimal solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
      System.out.println("Number of bins used: " + objective.value());
      double totalWeight = 0;
      for (int j = 0; j < data.numBins; ++j) {
        if (y[j].solutionValue() == 1) {
          System.out.println("\nBin " + j + "\n");
          double binWeight = 0;
          for (int i = 0; i < data.numItems; ++i) {
            if (x[i][j].solutionValue() == 1) {
              System.out.println("Item " + i + " - weight: " + data.weights[i]);
              binWeight += data.weights[i];
            }
          }
          System.out.println("Packed bin weight: " + binWeight);
          totalWeight += binWeight;
        }
      }
      System.out.println("\nTotal packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }
  private BinPackingMip() {}
}

C#

using System;
using Google.OrTools.LinearSolver;

public class BinPackingMip
{
    class DataModel
    {
        public static double[] Weights = { 48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30 };
        public int NumItems = Weights.Length;
        public int NumBins = Weights.Length;
        public double BinCapacity = 100.0;
    }
    public static void Main()
    {
        DataModel data = new DataModel();

        // Create the linear solver with the SCIP backend.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        Variable[,] x = new Variable[data.NumItems, data.NumBins];
        for (int i = 0; i < data.NumItems; i++)
        {
            for (int j = 0; j < data.NumBins; j++)
            {
                x[i, j] = solver.MakeIntVar(0, 1, $"x_{i}_{j}");
            }
        }
        Variable[] y = new Variable[data.NumBins];
        for (int j = 0; j < data.NumBins; j++)
        {
            y[j] = solver.MakeIntVar(0, 1, $"y_{j}");
        }

        for (int i = 0; i < data.NumItems; ++i)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            for (int j = 0; j < data.NumBins; ++j)
            {
                constraint.SetCoefficient(x[i, j], 1);
            }
        }

        for (int j = 0; j < data.NumBins; ++j)
        {
            Constraint constraint = solver.MakeConstraint(0, Double.PositiveInfinity, "");
            constraint.SetCoefficient(y[j], data.BinCapacity);
            for (int i = 0; i < data.NumItems; ++i)
            {
                constraint.SetCoefficient(x[i, j], -DataModel.Weights[i]);
            }
        }

        Objective objective = solver.Objective();
        for (int j = 0; j < data.NumBins; ++j)
        {
            objective.SetCoefficient(y[j], 1);
        }
        objective.SetMinimization();

        Solver.ResultStatus resultStatus = solver.Solve();

        // Check that the problem has an optimal solution.
        if (resultStatus != Solver.ResultStatus.OPTIMAL)
        {
            Console.WriteLine("The problem does not have an optimal solution!");
            return;
        }
        Console.WriteLine($"Number of bins used: {solver.Objective().Value()}");
        double TotalWeight = 0.0;
        for (int j = 0; j < data.NumBins; ++j)
        {
            double BinWeight = 0.0;
            if (y[j].SolutionValue() == 1)
            {
                Console.WriteLine($"Bin {j}");
                for (int i = 0; i < data.NumItems; ++i)
                {
                    if (x[i, j].SolutionValue() == 1)
                    {
                        Console.WriteLine($"Item {i} weight: {DataModel.Weights[i]}");
                        BinWeight += DataModel.Weights[i];
                    }
                }
                Console.WriteLine($"Packed bin weight: {BinWeight}");
                TotalWeight += BinWeight;
            }
        }
        Console.WriteLine($"Total packed weight: {TotalWeight}");
    }
}