Il problema dello zaino

Nel problema dello zaino, devi creare un pacchetto di articoli con determinati valori e dimensioni (come pesi o volumi), in un container con una capacità massima di Google. Se le dimensioni totali degli articoli superano la capacità, non puoi imballarli tutti. In tal caso, il problema è scegliere un sottoinsieme degli elementi del totale massimo che verrà inserito nel contenitore.

Le sezioni seguenti mostrano come risolvere un problema relativo allo zaino utilizzando OR-Tools.

Esempio

Ecco una rappresentazione grafica di un problema relativo a uno zaino:

Nell'animazione qui sopra, 50 elementi sono pacchettizzati in un cestino. Ogni elemento ha un valore (il numero sull'elemento) e una ponderazione (circa proporzionale all'area del ). È stato dichiarato che il bin ha una capacità di 850 e il nostro obiettivo è trovare il set di articoli che massimizzeranno il valore totale senza superare la capacità.

Le seguenti sezioni descrivono i programmi che risolvono un problema con gli zaini. Per i programmi completi, vedi Programmi completi.

Importa le librerie

Il codice seguente importa le librerie richieste.

Python

from ortools.algorithms.python import knapsack_solver

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

C#

using System;
using Google.OrTools.Algorithms;

crea i dati

Il codice seguente crea i dati per il problema.

Python

values = [
    # fmt:off
  360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
  78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
  87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
  312
    # fmt:on
]
weights = [
    # fmt: off
  [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
   42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
   3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
    # fmt: on
]
capacities = [850]

C++

std::vector<int64_t> values = {
    360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
    38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
    22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
    36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

std::vector<std::vector<int64_t>> weights = {
    {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
     42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
     7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

std::vector<int64_t> capacities = {850};

Java

final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
    78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
    78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
    0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
    65, 0, 79, 20, 65, 52, 13}};

final long[] capacities = {850};

C#

long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                  256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                  78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                      42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                      7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

long[] capacities = { 850 };

I dati includono:

  • weights: un vettore contenente i pesi degli elementi.
  • values: un vettore contenente i valori degli elementi.
  • capacities: un vettore con una sola voce, la capacità dello zaino.

Dichiara il risolutore

Il seguente codice dichiara il risolutore a zaino, un risolutore specializzato per problemi con gli zaini.

Python

solver = knapsack_solver.KnapsackSolver(
    knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample",
)

C++

KnapsackSolver solver(
    KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
    "KnapsackExample");

Java

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

C#

KnapsackSolver solver = new KnapsackSolver(
    KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

L'opzione KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER indica al risolutore di utilizzare l'algoritmo branch and bound per risolvere il problema.

Chiama il risolutore

Il codice seguente chiama il risolutore e stampa la soluzione.

Python

solver.init(values, weights, capacities)
computed_value = solver.solve()
packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
    if solver.best_solution_contains(i):
        packed_items.append(i)
        packed_weights.append(weights[0][i])
        total_weight += weights[0][i]
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)

C++

solver.Init(values, weights, capacities);
int64_t computed_value = solver.Solve();
std::vector<int> packed_items;
for (std::size_t i = 0; i < values.size(); ++i) {
  if (solver.BestSolutionContains(i)) packed_items.push_back(i);
}
std::ostringstream packed_items_ss;
std::copy(packed_items.begin(), packed_items.end() - 1,
          std::ostream_iterator<int>(packed_items_ss, ", "));
packed_items_ss << packed_items.back();

std::vector<int64_t> packed_weights;
packed_weights.reserve(packed_items.size());
for (const auto& it : packed_items) {
  packed_weights.push_back(weights[0][it]);
}
std::ostringstream packed_weights_ss;
std::copy(packed_weights.begin(), packed_weights.end() - 1,
          std::ostream_iterator<int>(packed_weights_ss, ", "));
packed_weights_ss << packed_weights.back();

int64_t total_weights =
    std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

LOG(INFO) << "Total value: " << computed_value;
LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
LOG(INFO) << "Total weight: " << total_weights;
LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";

Java

solver.init(values, weights, capacities);
final long computedValue = solver.solve();
ArrayList<Integer> packedItems = new ArrayList<>();
ArrayList<Long> packedWeights = new ArrayList<>();
int totalWeight = 0;
System.out.println("Total value = " + computedValue);
for (int i = 0; i < values.length; i++) {
  if (solver.bestSolutionContains(i)) {
    packedItems.add(i);
    packedWeights.add(weights[0][i]);
    totalWeight = (int) (totalWeight + weights[0][i]);
  }
}
System.out.println("Total weight: " + totalWeight);
System.out.println("Packed items: " + packedItems);
System.out.println("Packed weights: " + packedWeights);

C#

solver.Init(values, weights, capacities);
long computedValue = solver.Solve();
Console.WriteLine("Optimal Value = " + computedValue);

Il programma prima inizializza il risolutore e poi lo chiama computed_value = solver.Solve(). Il valore totale della soluzione ottimale è computed_value, che è lo stesso come peso totale in questo caso. Il programma ottiene quindi gli indici del gli elementi pacchettizzati nella soluzione come segue:

packed_items = [x for x in range(0, len(weights[0]))
                  if solver.BestSolutionContains(x)]
Poiché "solver.BestSolutionContains(x)" restituisce "TRUE" se l'elemento x è incluso nella soluzione, "packed_items" è un elenco degli elementi pacchettizzati ottimali. Analogamente, "packed_weights" sono i pesi degli elementi pacchettizzati. ### Output del programma Ecco l'output del programma.
Total value = 7534
Total weight: 850
Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29, 30, 31,
               32, 34, 38, 39, 41, 42, 44, 47, 48, 49]
Packed_weights: [7, 0, 22, 80, 11, 59, 18, 0, 3, 8, 15, 42, 9, 0, 47, 52, 26, 6, 29, 84, 2, 4,
                 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]

Completa i programmi

Di seguito sono riportati i programmi completi per risolvere il problema degli zaini.

Python

from ortools.algorithms.python import knapsack_solver


def main():
    # Create the solver.
    solver = knapsack_solver.KnapsackSolver(
        knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
        "KnapsackExample",
    )

    values = [
        # fmt:off
      360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
      78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
      87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
      312
        # fmt:on
    ]
    weights = [
        # fmt: off
      [7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0,
       42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
       3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13],
        # fmt: on
    ]
    capacities = [850]

    solver.init(values, weights, capacities)
    computed_value = solver.solve()

    packed_items = []
    packed_weights = []
    total_weight = 0
    print("Total value =", computed_value)
    for i in range(len(values)):
        if solver.best_solution_contains(i):
            packed_items.append(i)
            packed_weights.append(weights[0][i])
            total_weight += weights[0][i]
    print("Total weight:", total_weight)
    print("Packed items:", packed_items)
    print("Packed_weights:", packed_weights)


if __name__ == "__main__":
    main()

C++

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <sstream>
#include <vector>

#include "ortools/algorithms/knapsack_solver.h"

namespace operations_research {
void RunKnapsackExample() {
  // Instantiate the solver.
  KnapsackSolver solver(
      KnapsackSolver::KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER,
      "KnapsackExample");

  std::vector<int64_t> values = {
      360, 83, 59,  130, 431, 67, 230, 52,  93,  125, 670, 892, 600,
      38,  48, 147, 78,  256, 63, 17,  120, 164, 432, 35,  92,  110,
      22,  42, 50,  323, 514, 28, 87,  73,  78,  15,  26,  78,  210,
      36,  85, 189, 274, 43,  33, 10,  19,  389, 276, 312};

  std::vector<std::vector<int64_t>> weights = {
      {7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
       42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
       7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13}};

  std::vector<int64_t> capacities = {850};

  solver.Init(values, weights, capacities);
  int64_t computed_value = solver.Solve();

  // Print solution
  std::vector<int> packed_items;
  for (std::size_t i = 0; i < values.size(); ++i) {
    if (solver.BestSolutionContains(i)) packed_items.push_back(i);
  }
  std::ostringstream packed_items_ss;
  std::copy(packed_items.begin(), packed_items.end() - 1,
            std::ostream_iterator<int>(packed_items_ss, ", "));
  packed_items_ss << packed_items.back();

  std::vector<int64_t> packed_weights;
  packed_weights.reserve(packed_items.size());
  for (const auto& it : packed_items) {
    packed_weights.push_back(weights[0][it]);
  }
  std::ostringstream packed_weights_ss;
  std::copy(packed_weights.begin(), packed_weights.end() - 1,
            std::ostream_iterator<int>(packed_weights_ss, ", "));
  packed_weights_ss << packed_weights.back();

  int64_t total_weights =
      std::accumulate(packed_weights.begin(), packed_weights.end(), int64_t{0});

  LOG(INFO) << "Total value: " << computed_value;
  LOG(INFO) << "Packed items: {" << packed_items_ss.str() << "}";
  LOG(INFO) << "Total weight: " << total_weights;
  LOG(INFO) << "Packed weights: {" << packed_weights_ss.str() << "}";
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::RunKnapsackExample();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.algorithms.samples;
import com.google.ortools.Loader;
import com.google.ortools.algorithms.KnapsackSolver;
import java.util.ArrayList;

/**
 * Sample showing how to model using the knapsack solver.
 */
public class Knapsack {
  private Knapsack() {}

  private static void solve() {
    KnapsackSolver solver = new KnapsackSolver(
        KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "test");

    final long[] values = {360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
        78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26,
        78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312};

    final long[][] weights = {{7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9,
        0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31,
        65, 0, 79, 20, 65, 52, 13}};

    final long[] capacities = {850};

    solver.init(values, weights, capacities);
    final long computedValue = solver.solve();

    ArrayList<Integer> packedItems = new ArrayList<>();
    ArrayList<Long> packedWeights = new ArrayList<>();
    int totalWeight = 0;
    System.out.println("Total value = " + computedValue);
    for (int i = 0; i < values.length; i++) {
      if (solver.bestSolutionContains(i)) {
        packedItems.add(i);
        packedWeights.add(weights[0][i]);
        totalWeight = (int) (totalWeight + weights[0][i]);
      }
    }
    System.out.println("Total weight: " + totalWeight);
    System.out.println("Packed items: " + packedItems);
    System.out.println("Packed weights: " + packedWeights);
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    Knapsack.solve();
  }
}

C#

using System;
using Google.OrTools.Algorithms;

public class Knapsack
{
    static void Main()
    {
        KnapsackSolver solver = new KnapsackSolver(
            KnapsackSolver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, "KnapsackExample");

        long[] values = { 360, 83, 59, 130, 431, 67,  230, 52,  93,  125, 670, 892, 600, 38,  48,  147, 78,
                          256, 63, 17, 120, 164, 432, 35,  92,  110, 22,  42,  50,  323, 514, 28,  87,  73,
                          78,  15, 26, 78,  210, 36,  85,  189, 274, 43,  33,  10,  19,  389, 276, 312 };

        long[,] weights = { { 7,  0,  30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0,  36, 3,  8,  15,
                              42, 9,  0,  42, 47, 52, 32, 26, 48, 55, 6,  29, 84, 2,  4,  18, 56,
                              7,  29, 93, 44, 71, 3,  86, 66, 31, 65, 0,  79, 20, 65, 52, 13 } };

        long[] capacities = { 850 };

        solver.Init(values, weights, capacities);
        long computedValue = solver.Solve();

        Console.WriteLine("Optimal Value = " + computedValue);
    }
}